Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
1
% Copyright (c) 2007-2016 Karim Belabas.
2
% Permission is granted to copy, distribute and/or modify this document
3
% under the terms of the GNU General Public License
4
5
% Reference Card for PARI-GP, Algebraic Number Theory.
6
% Author:
7
% Karim Belabas
8
% Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence
9
% email: [email protected]
10
%
11
% See refcard.tex for acknowledgements and thanks.
12
\def\TITLE{Algebraic Number Theory}
13
\input refmacro.tex
14
\def\p{\goth{p}}
15
16
\section{Binary Quadratic Forms}
17
%
18
\li{create $ax^2+bxy+cy^2$}{Qfb$(a,b,c)$ or Qfb$([a,b,c])$}
19
\li{reduce $x$ ($s =\sqrt{D}$, $l=\floor{s}$)}
20
{qfbred$(x,\{\fl\},\{D\},\{l\},\{s\})$}
21
\li{return $[y,g]$, $g\in \text{SL}_2(\ZZ)$, $y = g\cdot x$ reduced}
22
{qfbredsl2$(x)$}
23
\li{composition of forms}{$x$*$y$ {\rm or }qfbnucomp$(x,y,l)$}
24
\li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}
25
\li{composition}{qfbcomp$(x,y)$}
26
\li{\dots without reduction}{qfbcompraw$(x,y)$}
27
\li{$n$-th power}{qfbpow$(x,n)$}
28
\li{\dots without reduction}{qfbpowraw$(x,n)$}
29
\li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}
30
\li{class number of disc. $x$}{qfbclassno$(x)$}
31
\li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}
32
\li{solve $Q(x,y) = n$ in integers}{qfbsolve$(Q,n)$}
33
34
\section{Quadratic Fields}
35
%
36
\li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}
37
\li{minimal polynomial of $\omega$}{quadpoly$(x)$}
38
\li{discriminant of $\QQ(\sqrt{x})$}{quaddisc$(x)$}
39
\li{regulator of real quadratic field}{quadregulator$(x)$}
40
\li{fundamental unit in real $\QQ(\sqrt{D})$}{quadunit($D$,\{'w\})}
41
\li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\{\fl\},\{t\})$}
42
\li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\{\fl\})$}
43
\li{\dots using specific class invariant ($D<0$)}{polclass$(D,\{\var{inv}\})$}
44
\li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\{\fl\})$}
45
\bigskip
46
47
\section{General Number Fields: Initializations}
48
The number field $K = \QQ[X]/(f)$ is given by irreducible $f\in\QQ[X]$.
49
We denote $\theta = \bar{X}$ the canonical root of $f$ in $K$.
50
A \var{nf} structure contains a maximal order and allows operations on
51
elements and ideals. A \var{bnf} adds class group and units. A \var{bnr} is
52
attached to ray class groups and class field theory. A \var{rnf} is attached
53
to relative extensions $L/K$.\hfill\break
54
%
55
\li{init number field structure \var{nf}}{nfinit$(f,\{\fl\})$}
56
\beginindentedkeys
57
\li{known integer basis $B$}{nfinit$([f,B])$}
58
\li{order maximal at $\var{vp}=[p_1,\dots,p_k]$}{nfinit$([f,\var{vp}])$}
59
\li{order maximal at all $p \leq P$}{nfinit$([f,P])$}
60
\li{certify maximal order}{nfcertify$(\var{nf})$}
61
\endindentedkeys
62
\subsec{nf members:}
63
\beginindentedkeys
64
\li{a monic $F\in \ZZ[X]$ defining $K$}{\var{nf}.pol}
65
\li{number of real/complex places}{\var{nf}.r1/r2/sign}
66
\li{discriminant of \var{nf}}{\var{nf}.disc}
67
\li{primes ramified in \var{nf}}{\var{nf}.p}
68
\li{$T_2$ matrix}{\var{nf}.t2}
69
\li{complex roots of $F$}{\var{nf}.roots}
70
\li{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}
71
\li{different/codifferent}{\var{nf}.diff{\rm, }\var{nf}.codiff}
72
\li{index $[\ZZ_K:\ZZ[X]/(F)]$}{\var{nf}.index}
73
\endindentedkeys
74
\li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}
75
\li{init relative \var{rnf} $L = K[Y]/(g)$}{rnfinit$(\var{nf},g)$}
76
%
77
\li{init \var{bnf} structure}{bnfinit$(f, 1)$}
78
\subsec{bnf members: {\rm same as \var{nf}, plus}}
79
\beginindentedkeys
80
\li{underlying \var{nf}}{\var{bnf}.nf}
81
\li{class group, regulator}{\var{bnf}.clgp, \var{bnf}.reg}
82
\li{fundamental/torsion units}{\var{bnf}.fu{\rm, }\var{bnf}.tu}
83
\endindentedkeys
84
\li{add $S$-class group and units, yield \var{bnf}S}{bnfsunit$(\var{bnf},S)$}
85
\newcolumn
86
87
\li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\{\fl\})$}
88
%
89
\subsec{bnr members: {\rm same as \var{bnf}, plus}}
90
\beginindentedkeys
91
\li{underlying \var{bnf}}{\var{bnr}.bnf}
92
\li{big ideal structure}{\var{bnr}.bid}
93
\li{modulus $m$}{\var{bnr}.mod}
94
\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
95
\endindentedkeys
96
97
\smallskip
98
\section{Fields, subfields, embeddings}
99
\subsec{Defining polynomials, embeddings}
100
\li{(some) number fields with Galois group $G$}{nflist$(G)$}
101
\li{\dots and $|\text{disc}(K)| = N$ and $s$ complex places}{nflist$(G, N, \{s\})$}
102
\li{\dots and $a \leq |\text{disc}(K)| \leq b$}{nflist$(G, [a,b], \{s\})$}
103
\li{smallest poly defining $f=0$ (slow)}{polredabs$(f,\{\fl\})$}
104
\li{small poly defining $f=0$ (fast)}{polredbest$(f,\{\fl\})$}
105
\li{random Tschirnhausen transform of $f$}{poltschirnhaus$(f)$}
106
\li{$\QQ[t]/(f) \subset \QQ[t]/(g)$ ? Isomorphic?}
107
{nfisincl$(f,g)$, \kbd{nfisisom}}
108
\li{reverse polmod $a=A(t)\mod T(t)$}{modreverse$(a)$}
109
\li{compositum of $\QQ[t]/(f)$, $\QQ[t]/(g)$}{polcompositum$(f,g,\{\fl\})$}
110
\li{compositum of $K[t]/(f)$, $K[t]/(g)$}{nfcompositum$(\var{nf}, f,g,\{\fl\})$}
111
\li{splitting field of $K$ (degree divides $d$)}
112
{nfsplitting$(\var{nf},\{d\})$}
113
\li{signs of real embeddings of $x$}{nfeltsign$(\var{nf},x,\{pl\})$}
114
\li{complex embeddings of $x$}{nfeltembed$(\var{nf},x,\{pl\})$}
115
\li{$T\in K[t]$, \# of real roots of $\sigma(T)\in\R[t]$}{nfpolsturm$(\var{nf},T,\{pl\})$}
116
117
\smallskip
118
\subsec{Subfields, polynomial factorization}
119
\li{subfields (of degree $d$) of \var{nf}}{nfsubfields$(\var{nf},\{d\})$}
120
\li{maximal subfields of \var{nf}}{nfsubfieldsmax$(\var{nf})$}
121
\li{maximal CM subfield of \var{nf}}{nfsubfieldscm$(\var{nf})$}
122
\li{$d$-th degree subfield of $\QQ(\zeta_n)$} {polsubcyclo$(n,d,\{v\})$}
123
\li{roots of unity in \var{nf}}{nfrootsof1$(\var{nf}\,)$}
124
\li{roots of $g$ belonging to \var{nf}}{nfroots$(\var{nf},g)$}
125
\li{factor $g$ in \var{nf}}{nffactor$(\var{nf},g)$}
126
127
\smallskip
128
\subsec{Linear and algebraic relations}
129
\li{poly of degree $\le k$ with root $x\in\CC$}{algdep$(x,k)$}
130
\li{alg. dep. with pol.~coeffs for series $s$}{seralgdep$(s,x,y)$}
131
\li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}
132
133
\section{Basic Number Field Arithmetic (nf)}
134
Number field elements are \typ{INT}, \typ{FRAC}, \typ{POL}, \typ{POLMOD}, or
135
\typ{COL} (on integral basis \kbd{\var{nf}.zk}).
136
\smallskip
137
\subsec{Basic operations}
138
\li{$x+y$}{nfeltadd$(\var{nf},x,y)$}
139
\li{$x\times y$}{nfeltmul$(\var{nf},x,y)$}
140
\li{$x^n$, $n\in \ZZ$}{nfeltpow$(\var{nf},x,n)$}
141
\li{$x / y$}{nfeltdiv$(\var{nf},x,y)$}
142
\li{$q = x$\kbd{\bs/}$y := $\kbd{round}$(x/y)$}{nfeltdiveuc$(\var{nf},x,y)$}
143
\li{$r = x$\kbd{\%}$y := x - (x$\kbd{\bs/}$y)y$}{nfeltmod$(\var{nf},x,y)$}
144
\li{\dots $[q,r]$ as above}{nfeltdivrem$(\var{nf},x,y)$}
145
\li{reduce $x$ modulo ideal $A$}{nfeltreduce$(\var{nf},x,A)$}
146
\li{absolute trace $\text{Tr}_{K/\QQ} (x)$}{nfelttrace$(\var{nf},x)$}
147
\li{absolute norm $\text{N}_{K/\QQ} (x)$}{nfeltnorm$(\var{nf},x)$}
148
149
\smallskip
150
\subsec{Multiplicative structure of $K^*$; $K^*/(K^*)^n$}
151
\li{valuation $v_\p(x)$}{nfeltval$(\var{nf},x,\p)$}
152
\li{\dots write $x = \pi^{v_\p(x)} y$}{nfeltval$(\var{nf},x,\p,\&y)$}
153
\li{quadratic Hilbert symbol (at $\p$)}
154
{nfhilbert$(\var{nf},a,b,\{\p\})$}
155
\li{$b$ such that $x b^n = v$ is small}{idealredmodpower$(\var{nf},x,n)$}
156
157
\smallskip
158
\subsec{Maximal order and discriminant}
159
\li{integral basis of field $\QQ[x]/(f)$}{nfbasis$(f)$}
160
\li{field discriminant of $\QQ[x]/(f)$}{nfdisc$(f)$}
161
\li{\dots and factorization}{nfdiscfactors$(f)$}
162
\li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}
163
\li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}
164
165
\smallskip
166
\subsec{Dedekind Zeta Function $\zeta_K$, Hecke $L$ series}
167
$R = [c,w,h]$ in initialization means we restrict $s\in \CC$
168
to domain $|\Re(s)-c| < w$, $|\Im(s)| < h$; $R = [w,h]$ encodes $[1/2,w,h]$
169
and $[h]$ encodes $R = [1/2,0,h]$ (critical line up to height $h$).\hfil\break
170
\li{$\zeta_K$ as Dirichlet series, $N(I)<b$}{dirzetak$(\var{nf},b)$}
171
\li{init $\zeta_K^{(k)}(s)$ for $k \leq n$}
172
{L = lfuninit$(\var{bnf}, R, \{n = 0\})$}
173
\li{compute $\zeta_K(s)$ ($n$-th derivative)}{lfun$(L, s, \{n=0\})$}
174
\li{compute $\Lambda_K(s)$ ($n$-th derivative)}{lfunlambda$(L, s, \{n=0\})$}
175
\smallskip
176
177
\li{init $L_K^{(k)}(s, \chi)$ for $k \leq n$}
178
{L = lfuninit$([\var{bnr},\var{chi}], R, \{n = 0\})$}
179
\li{compute $L_K(s, \chi)$ ($n$-th derivative)}{lfun$(L, s, \{n\})$}
180
\li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\{\fl\})$}
181
\li{$L(1,\chi)$, for all $\chi$ trivial on $H$}
182
{bnrL1$(\var{bnr},\{H\},\{\fl\})$}
183
184
\section{Class Groups \& Units (bnf, bnr)}
185
Class field theory data $a_1,\{a_2\}$ is usually \var{bnr} (ray class field),
186
$\var{bnr},H$ (congruence subgroup) or $\var{bnr},\chi$ (character on
187
\kbd{bnr.clgp}). Any of these define a unique abelian extension of $K$.
188
189
\li{units / $S$-units}{bnfunits$(\var{bnf},\{S\})$}
190
\li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}
191
\li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\{\fl\})$}
192
\li{expo.~of ideal $x$ on ray class gp}{bnrisprincipal$(\var{bnr},x,\{\fl\})$}
193
\li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}
194
\li{\dots on $S$-units, $U$ is \kbd{bnfunits}$(\var{bnf},S)$}
195
{bnfisunit$(\var{bnfs},x,U)$}
196
\li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}
197
\li{narrow class group}{bnfnarrow$(\var{bnf})$}
198
199
\smallskip
200
\subsec{Class Field Theory}
201
\li{ray class number for modulus $m$}{bnrclassno$(\var{bnf},m)$}
202
\li{discriminant of class field}{bnrdisc$(a_1,\{a_2\})$}
203
\li{ray class numbers, $l$ list of moduli}{bnrclassnolist$(\var{bnf},l)$}
204
\li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\{\fl\})$}
205
\li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}
206
\li{is modulus the conductor?}{bnrisconductor$(a_1,\{a_2\})$}
207
\li{is class field $(\var{bnr},H)$ Galois over $K^G$}
208
{bnrisgalois$(\var{bnr},G,H)$}
209
\li{action of automorphism on \kbd{bnr.gen}}
210
{bnrgaloismatrix$(\var{bnr},\var{aut})$}
211
\li{apply \kbd{bnrgaloismatrix} $M$ to $H$}
212
{bnrgaloisapply$(\var{bnr},M,H)$}
213
\li{characters on \kbd{bnr.clgp} s.t. $\chi(g_i) = e(v_i)$}
214
{bnrchar$(\var{bnr},g,\{v\})$}
215
\li{conductor of character $\chi$}{bnrconductor$(\var{bnr},\var{chi})$}
216
\li{conductor of extension}{bnrconductor$(a_1,\{a_2\},\{\fl\})$}
217
\li{conductor of extension $K[Y]/(g)$}{rnfconductor$(\var{bnf},g)$}
218
\li{canonical projection $\text{Cl}_F\to\text{Cl}_f$, $f\mid F$}{bnrmap}
219
\li{Artin group of extension $K[Y]/(g)$}{rnfnormgroup$(\var{bnr},g)$}
220
\li{subgroups of \var{bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\{\fl\})$}
221
\li{class field defined by $H < \text{Cl}_f$}{bnrclassfield$(\var{bnr},H)$}
222
\li{\dots low level equivalent, prime degree}{rnfkummer$(\var{bnr},H)$}
223
\li{same, using Stark units (real field)}{bnrstark$(\var{bnr},sub,\{\fl\})$}
224
\li{is $a$ an $n$-th power in $K_v$ ?}{nfislocalpower$(\var{nf},v,a,n)$}
225
\li{cyclic $L/K$ satisf. local conditions}
226
{nfgrunwaldwang$(\var{nf},P,D,\var{pl})$}
227
\shortcopyrightnotice
228
\newcolumn
229
\subsec{Logarithmic class group}
230
\li{logarithmic $\ell$-class group}{bnflog$(\var{bnf},\ell)$}
231
\li{$[\tilde{e}(F_v/\Q_p),\tilde{f}(F_v/\Q_p)]$}
232
{bnflogef$(\var{bnf},\var{pr})$}
233
\li{$\exp \deg_F(A)$}{bnflogdegree$(\var{bnf}, A, \ell)$}
234
\li{is $\ell$-extension $L/K$ locally cyclotomic}{rnfislocalcyclo$(\var{rnf})$}
235
236
\section{Ideals: {\rm elements, primes, or matrix of generators in HNF}}
237
\li{is $id$ an ideal in \var{nf} ?}{nfisideal$(\var{nf},id)$}
238
\li{is $x$ principal in \var{bnf} ?}{bnfisprincipal$(\var{bnf},x)$}
239
\li{give $[a,b]$, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}
240
\li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}
241
\li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}
242
\li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}
243
\li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}
244
245
\smallskip
246
\subsec{Ideal Operations}
247
\li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}
248
\li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\{\fl\})$}
249
\li{intersection of ideal $x$ with $\Q$}{idealdown$(\var{nf},x)$}
250
\li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\{\fl\})$}
251
\li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\{\fl\})$}
252
\li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}
253
\li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\{\fl\})$}
254
\li{Find $(a,b)\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}
255
\li{coprime integral $A,B$ such that $x=A/B$}{idealnumden$(\var{nf},x)$}
256
257
\smallskip
258
\subsec{Primes and Multiplicative Structure}
259
\li{check whether $x$ is a maximal ideal}{idealismaximal$(\var{nf},x)$}
260
\li{factor ideal $x$ in $\ZZ_K$}{idealfactor$(\var{nf},x)$}
261
\li{expand ideal factorization in $K$}{idealfactorback$(\var{nf},f,\{e\})$}
262
\li{is ideal $A$ an $n$-th power ?}{idealispower$(\var{nf},A,n)$}
263
\li{expand elt factorization in $K$}{nffactorback$(\var{nf},f,\{e\})$}
264
\li{decomposition of prime $p$ in $\ZZ_K$}{idealprimedec$(\var{nf},p)$}
265
\li{valuation of $x$ at prime ideal \var{pr}}{idealval$(\var{nf},x,\var{pr})$}
266
\li{weak approximation theorem in \var{nf}}{idealchinese$(\var{nf},x,y)$}
267
\li{$a\in K$, s.t. $v_{\p}(a) = v_{\p}(x)$ if
268
$v_{\p}(x)\neq 0$}
269
{idealappr$(\var{nf},x)$}
270
\li{$a\in K$ such that $(a\cdot x, y) = 1$}{idealcoprime$(\var{nf},x,y)$}
271
\li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\{\fl\})$}
272
\li{structure of $(1+\p) / (1+\p^k)$}
273
{idealprincipalunits$(\var{nf},\var{pr},k)$}
274
\li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}
275
\li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\{\fl\})$}
276
\li{add Archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\{\fl\})$}
277
278
\li{init \kbd{modpr} structure}{nfmodprinit$(\var{nf},\var{pr},\{v\})$}
279
\li{project $t$ to $\ZZ_K/\var{pr}$}{nfmodpr$(\var{nf},t,\var{modpr})$}
280
\li{lift from $\ZZ_K/\var{pr}$}{nfmodprlift$(\var{nf},t,\var{modpr})$}
281
282
\section{Galois theory over $\QQ$}
283
\li{conjugates of a root $\theta$ of \var{nf}}{nfgaloisconj$(\var{nf},\{\fl\})$}
284
\li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}
285
\li{Galois group of field $\QQ[x]/(f)$}{polgalois$(f)$}
286
\li{resolvent field of $\QQ[x]/(f)$}{nfresolvent$(f)$}
287
\li{initializes a Galois group structure $G$}{galoisinit$(\var{pol},\{den\})$}
288
\li{\dots for the splitting field of \var{pol}}{galoissplittinginit$(\var{pol},\{d\})$}
289
\li{character table of $G$}{galoischartable$(G)$}
290
\li{conjugacy classes of $G$}{galoisconjclasses$(G)$}
291
\li{$\det(1 - \rho(g)T)$, $\chi$ character of $\rho$}
292
{galoischarpoly$(G,\chi,\{o\})$}
293
\li{$\det(\rho(g))$, $\chi$ character of $\rho$}
294
{galoischardet$(G,\chi,\{o\})$}
295
\li{action of $p$ in nfgaloisconj form}{galoispermtopol$(G,\{p\})$}
296
\li{identify as abstract group}{galoisidentify$(G)$}
297
\li{export a group for GAP/MAGMA}{galoisexport$(G,\{\fl\})$}
298
\li{subgroups of the Galois group $G$}{galoissubgroups$(G)$}
299
\li{is subgroup $H$ normal?}{galoisisnormal$(G,H)$}
300
301
\newcolumn
302
\title{\TITLE}
303
\centerline{(PARI-GP version \PARIversion)}
304
305
\medskip
306
307
\li{subfields from subgroups}{galoissubfields$(G,\{\fl\},\{v\})$}
308
\li{fixed field}{galoisfixedfield$(G,\var{perm},\{\fl\},\{v\})$}
309
\li{Frobenius at maximal ideal $P$}{idealfrobenius$(\var{nf},G,P)$}
310
\li{ramification groups at $P$}{idealramgroups$(\var{nf},G,P)$}
311
\li{is $G$ abelian?}{galoisisabelian$(G,\{\fl\})$}
312
\li{abelian number fields/$\QQ$}{galoissubcyclo(N,H,\{\fl\},\{v\})}
313
314
\subsec{The \kbd{galpol} package}
315
\li{query the package: polynomial}{galoisgetpol(a,b,\{s\})}
316
\li{\dots : permutation group}{galoisgetgroup(a,{b})}
317
\li{\dots : group description}{galoisgetname(a,b)}
318
319
\section{Relative Number Fields (rnf)}
320
Extension $L/K$ is defined by $T\in K[x]$.
321
\hfill\break
322
%
323
\li{absolute equation of $L$}{rnfequation$(\var{nf},T,\{\fl\})$}
324
\li{is $L/K$ abelian?}{rnfisabelian$(\var{nf},T)$}
325
\li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}
326
\li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}
327
\li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}
328
\li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}
329
\li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}
330
331
\smallskip
332
\subsec{Lifts and Push-downs}
333
\li{absolute $\rightarrow$ relative representation for $x$}
334
{rnfeltabstorel$(\var{rnf},x)$}
335
\li{relative $\rightarrow$ absolute representation for $x$}
336
{rnfeltreltoabs$(\var{rnf},x)$}
337
\li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}
338
\li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}
339
\leavevmode idem for $x$ ideal:
340
\kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hfill
341
342
\smallskip
343
\subsec{Norms and Trace}
344
\li{relative norm of element $x\in L$}{rnfeltnorm$(\var{rnf},x)$}
345
\li{relative trace of element $x\in L$}{rnfelttrace$(\var{rnf},x)$}
346
\li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}
347
\li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}
348
\li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}
349
\li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\{\fl\})$}
350
\li{initialize $T$ for norm eq.~solver}{rnfisnorminit$(K,pol,\{\fl\})$}
351
\li{is $a\in K$ a norm from $L$?}{rnfisnorm$(T,a,\{\fl\})$}
352
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
353
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
354
\li{characteristic poly.\ of $a$ mod $T$}{rnfcharpoly$(\var{nf},T,a,\{v\})$}
355
356
\smallskip
357
\subsec{Factorization}
358
\li{factor ideal $x$ in $L$}{rnfidealfactor$(\var{rnf},x)$}
359
\li{$[S,T] \colon T_{i,j} \mid S_i$; $S$ primes of $K$ above $p$}
360
{rnfidealprimedec$(\var{rnf},p)$}
361
362
\smallskip
363
\subsec{Maximal order $\ZZ_L$ as a $\ZZ_K$-module}
364
\li{relative {\tt polredbest}}{rnfpolredbest$(\var{nf},T)$}
365
\li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},T)$}
366
\li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},T,pr)$}
367
\li{discriminant of relative extension}{rnfdisc$(\var{nf},T)$}
368
\li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},T)$}
369
370
\smallskip
371
\subsec{General $\ZZ_K$-modules:
372
{\rm $M = [{\rm matrix}, {\rm vec.~of~ideals}] \subset L$}}
373
\li{relative HNF / SNF}{nfhnf$(\var{nf},M)${\rm, }nfsnf}
374
\li{multiple of $\det M$}{nfdetint$(\var{nf},M)$}
375
\li{HNF of $M$ where $d = \kbd{nfdetint}(M)$}{nfhnfmod$(x,d)$}
376
\li{reduced basis for $M$}{rnflllgram$(\var{nf},T,M)$}
377
\li{determinant of pseudo-matrix $M$}{rnfdet$(\var{nf},M)$}
378
\li{Steinitz class of $M$}{rnfsteinitz$(\var{nf},M)$}
379
\newcolumn
380
381
382
\li{$\ZZ_K$-basis of $M$ if $\ZZ_K$-free, or $0$}{rnfhnfbasis$(\var{bnf},M)$}
383
\li{$n$-basis of $M$, or $(n+1)$-generating set}{rnfbasis$(\var{bnf},M)$}
384
\li{is $M$ a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},M)$}
385
386
\section{Associative Algebras}
387
$A$ is a general associative algebra given by a multiplication table \var{mt}
388
(over $\QQ$ or $\FF_p$); represented by \var{al} from \kbd{algtableinit}.
389
390
\li{create \var{al} from \var{mt} (over $\FF_p$)}
391
{algtableinit$(\var{mt},\{p=0\})$}
392
\li{group algebra $\QQ[G]$ (or $\FF_p[G]$)}{alggroup$(G,\{p = 0\})$}
393
\li{center of group algebra}{alggroupcenter$(G,\{p = 0\})$}
394
395
\smallskip
396
\subsec{Properties}
397
\li{is $(\var{mt},p)$ OK for algtableinit?}
398
{algisassociative$(\var{mt},\{p=0\})$}
399
\li{multiplication table \var{mt}}{algmultable$(\var{al})$}
400
\li{dimension of $A$ over prime subfield}{algdim$(\var{al})$}
401
\li{characteristic of $A$}{algchar$(\var{al})$}
402
\li{is $A$ commutative?}{algiscommutative$(\var{al})$}
403
\li{is $A$ simple?}{algissimple$(\var{al})$}
404
\li{is $A$ semi-simple?}{algissemisimple$(\var{al})$}
405
\li{center of $A$}{algcenter$(\var{al})$}
406
\li{Jacobson radical of $A$}{algradical$(\var{al})$}
407
\li{radical $J$ and simple factors of $A/J$}{algsimpledec$(\var{al})$}
408
409
\smallskip
410
\subsec{Operations on algebras}
411
\li{create $A/I$, $I$ two-sided ideal}{algquotient$(\var{al},I)$}
412
\li{create $A_1\otimes A_2$}{algtensor$(\var{al1}, \var{al2})$}
413
\li{create subalgebra from basis $B$}{algsubalg$(\var{al}, B)$}
414
\li{quotients by ortho. central idempotents $e$}
415
{algcentralproj$(\var{al}, e)$}
416
\li{isomorphic alg. with integral mult. table}{algmakeintegral(\var{mt})}
417
\li{prime subalgebra of semi-simple $A$ over $\FF_p$}
418
{algprimesubalg$(\var{al})$}
419
\li{find isomorphism~$A\cong M_d(\FF_q)$}{algsplit(\var{al})}
420
421
\smallskip
422
\subsec{Operations on lattices in algebras}
423
\li{lattice generated by cols. of $M$}{alglathnf$(\var{al},M)$}
424
\li{\dots by the products~$xy$, $x\in lat1$, $y\in lat2$}{alglatmul$(\var{al},\var{lat1},\var{lat2})$}
425
\li{sum $lat1+lat2$ of the lattices}{alglatadd$(\var{al},\var{lat1},\var{lat2})$}
426
\li{intersection $lat1\cap lat2$}{alglatinter$(\var{al},\var{lat1},\var{lat2})$}
427
\li{test~$lat1\subset lat2$}{alglatsubset$(\var{al},\var{lat1},\var{lat2})$}
428
\li{generalized index~$(lat2:lat1)$}{alglatindex$(\var{al},\var{lat1},\var{lat2})$}
429
\li{$\{x\in al\mid x\cdot lat1\subset lat2\}$}{alglatlefttransporter$(\var{al},\var{lat1},\var{lat2})$}
430
\li{$\{x\in al\mid lat1\cdot x\subset lat2\}$}{alglatrighttransporter$(\var{al},\var{lat1},\var{lat2})$}
431
\li{test~$x\in lat$ (set~$c =$ coord. of~$x$)}{alglatcontains$(\var{al},\var{lat},x,\{\& c\})$}
432
\li{element of~$lat$ with coordinates~$c$}{alglatelement$(\var{al},\var{lat},c)$}
433
\subsec{Operations on elements}
434
\li{$a+b$, $a-b$, $-a$}{algadd$(\var{al},a,b)${\rm, }algsub{\rm, }algneg}
435
\li{$a\times b$, $a^2$}{algmul$(\var{al},a,b)${\rm, }algsqr}
436
\li{$a^n$, $a^{-1}$}{algpow$(\var{al},a,n)${\rm, }alginv}
437
\li{is $x$ invertible ? (then set $z=x^{-1}$)}{algisinv$(\var{al},x,\{\&z\})$}
438
\li{find $z$ such that $x\times z = y$}{algdivl$(\var{al},x,y)$}
439
\li{find $z$ such that $z\times x = y$}{algdivr$(\var{al},x,y)$}
440
\li{does $z$ s.t. $x\times z = y$ exist? (set it)}
441
{algisdivl$(\var{al},x,y,\{\&z\})$}
442
\li{matrix of $v\mapsto x\cdot v$}{algtomatrix$(\var{al}, x)$}
443
\li{absolute norm}{algnorm$(\var{al},x)$}
444
\li{absolute trace}{algtrace$(\var{al},x)$}
445
\li{absolute char. polynomial}{algcharpoly$(\var{al},x)$}
446
\li{given $a\in A$ and polynomial $T$, return $T(a)$}
447
{algpoleval$(\var{al},T,a)$}
448
\li{random element in a box}{algrandom$(\var{al}, b)$}
449
\vfill
450
\copyrightnotice
451
\newcolumn
452
453
\section{Central Simple Algebras}
454
$A$ is a central simple algebra over a number field $K$; represented by
455
\var{al} from \kbd{alginit}; $K$ is given by a \var{nf} structure.
456
457
\li{create CSA from data}
458
{alginit$(B,C,\{v\},\{maxord=1\})$}
459
\beginindentedkeys
460
\li{multiplication table over $K$}{$B = K${\rm, }$C = \var{mt}$}
461
\li{cyclic algebra $(L/K,\sigma,b)$}
462
{$B = \var{rnf}${\rm, }$C = [\var{sigma},b]$}
463
\li{quaternion algebra $(a,b)_K$}{$B = K$, $C = [a,b]$}
464
\li{matrix algebra $M_d(K)$}{$B = K$, $C = d$}
465
\li{local Hasse invariants over $K$}
466
{$B = K$, $C = [d, [\var{PR}, \var{HF}], \var{HI}]$}
467
\endindentedkeys
468
469
\smallskip
470
\subsec{Properties}
471
\li{type of \var{al} (\var{mt}, CSA)}{algtype$(\var{al})$}
472
\li{dimension of $A$ over~$\QQ$}{algdim$(\var{al},1)$}
473
\li{dimension of \var{al} over its center~$K$}{algdim$(\var{al})$}
474
\li{degree of $A$ ($=\sqrt{\dim_K A}$)}{algdegree$(\var{al})$}
475
\li{\var{al} a cyclic algebra $(L/K,\sigma,b)$; return $\sigma$}
476
{algaut$(\var{al})$}
477
\li{\dots return $b$}{algb$(\var{al})$}
478
\li{\dots return $L/K$, as an \var{rnf}}
479
{algsplittingfield$(\var{al})$}
480
\li{split $A$ over an extension of $K$}{algsplittingdata$(\var{al})$}
481
\li{splitting field of $A$ as an \var{rnf} over center}
482
{algsplittingfield$(\var{al})$}
483
\li{multiplication table over center}{algrelmultable$(\var{al})$}
484
\li{places of $K$ at which $A$ ramifies}{algramifiedplaces$(\var{al})$}
485
\li{Hasse invariants at finite places of $K$}{alghassef$(\var{al})$}
486
\li{Hasse invariants at infinite places of $K$}{alghassei$(\var{al})$}
487
\li{Hasse invariant at place $v$}{alghasse$(\var{al},v)$}
488
\li{index of $A$ over $K$ (at place $v$)}{algindex$(\var{al},\{v\})$}
489
\li{is \var{al} a division algebra? (at place $v$)}
490
{algisdivision$(\var{al},\{v\})$}
491
\li{is $A$ ramified? (at place $v$)}{algisramified$(\var{al},\{v\})$}
492
\li{is $A$ split? (at place $v$)}{algissplit$(\var{al},\{v\})$}
493
494
\smallskip
495
\subsec{Operations on elements}
496
\li{reduced norm}{algnorm$(\var{al},x)$}
497
\li{reduced trace}{algtrace$(\var{al},x)$}
498
\li{reduced char. polynomial}{algcharpoly$(\var{al},x)$}
499
\li{express $x$ on integral basis}{algalgtobasis$(\var{al},x)$}
500
\li{convert $x$ to algebraic form}{algbasistoalg$(\var{al},x)$}
501
\li{map $x\in A$ to $M_d(L)$, $L$ split. field} {algtomatrix$(\var{al},x)$}
502
503
\smallskip
504
\subsec{Orders}
505
\li{$\ZZ$-basis of order ${\cal O}_0$}{algbasis$(\var{al})$}
506
\li{discriminant of order ${\cal O}_0$}{algdisc$(\var{al})$}
507
\li{$\ZZ$-basis of natural order in terms ${\cal O}_0$'s basis}
508
{alginvbasis$(\var{al})$}
509
510
\vfill
511
\copyrightnotice
512
\bye
513
514