Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
% Copyright (c) 2007-2016 Karim Belabas.1% Permission is granted to copy, distribute and/or modify this document2% under the terms of the GNU General Public License34% Reference Card for PARI-GP, Algebraic Number Theory.5% Author:6% Karim Belabas7% Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence8% email: [email protected]9%10% See refcard.tex for acknowledgements and thanks.11\def\TITLE{Algebraic Number Theory}12\input refmacro.tex13\def\p{\goth{p}}1415\section{Binary Quadratic Forms}16%17\li{create $ax^2+bxy+cy^2$}{Qfb$(a,b,c)$ or Qfb$([a,b,c])$}18\li{reduce $x$ ($s =\sqrt{D}$, $l=\floor{s}$)}19{qfbred$(x,\{\fl\},\{D\},\{l\},\{s\})$}20\li{return $[y,g]$, $g\in \text{SL}_2(\ZZ)$, $y = g\cdot x$ reduced}21{qfbredsl2$(x)$}22\li{composition of forms}{$x$*$y$ {\rm or }qfbnucomp$(x,y,l)$}23\li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}24\li{composition}{qfbcomp$(x,y)$}25\li{\dots without reduction}{qfbcompraw$(x,y)$}26\li{$n$-th power}{qfbpow$(x,n)$}27\li{\dots without reduction}{qfbpowraw$(x,n)$}28\li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}29\li{class number of disc. $x$}{qfbclassno$(x)$}30\li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}31\li{solve $Q(x,y) = n$ in integers}{qfbsolve$(Q,n)$}3233\section{Quadratic Fields}34%35\li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}36\li{minimal polynomial of $\omega$}{quadpoly$(x)$}37\li{discriminant of $\QQ(\sqrt{x})$}{quaddisc$(x)$}38\li{regulator of real quadratic field}{quadregulator$(x)$}39\li{fundamental unit in real $\QQ(\sqrt{D})$}{quadunit($D$,\{'w\})}40\li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\{\fl\},\{t\})$}41\li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\{\fl\})$}42\li{\dots using specific class invariant ($D<0$)}{polclass$(D,\{\var{inv}\})$}43\li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\{\fl\})$}44\bigskip4546\section{General Number Fields: Initializations}47The number field $K = \QQ[X]/(f)$ is given by irreducible $f\in\QQ[X]$.48We denote $\theta = \bar{X}$ the canonical root of $f$ in $K$.49A \var{nf} structure contains a maximal order and allows operations on50elements and ideals. A \var{bnf} adds class group and units. A \var{bnr} is51attached to ray class groups and class field theory. A \var{rnf} is attached52to relative extensions $L/K$.\hfill\break53%54\li{init number field structure \var{nf}}{nfinit$(f,\{\fl\})$}55\beginindentedkeys56\li{known integer basis $B$}{nfinit$([f,B])$}57\li{order maximal at $\var{vp}=[p_1,\dots,p_k]$}{nfinit$([f,\var{vp}])$}58\li{order maximal at all $p \leq P$}{nfinit$([f,P])$}59\li{certify maximal order}{nfcertify$(\var{nf})$}60\endindentedkeys61\subsec{nf members:}62\beginindentedkeys63\li{a monic $F\in \ZZ[X]$ defining $K$}{\var{nf}.pol}64\li{number of real/complex places}{\var{nf}.r1/r2/sign}65\li{discriminant of \var{nf}}{\var{nf}.disc}66\li{primes ramified in \var{nf}}{\var{nf}.p}67\li{$T_2$ matrix}{\var{nf}.t2}68\li{complex roots of $F$}{\var{nf}.roots}69\li{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}70\li{different/codifferent}{\var{nf}.diff{\rm, }\var{nf}.codiff}71\li{index $[\ZZ_K:\ZZ[X]/(F)]$}{\var{nf}.index}72\endindentedkeys73\li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}74\li{init relative \var{rnf} $L = K[Y]/(g)$}{rnfinit$(\var{nf},g)$}75%76\li{init \var{bnf} structure}{bnfinit$(f, 1)$}77\subsec{bnf members: {\rm same as \var{nf}, plus}}78\beginindentedkeys79\li{underlying \var{nf}}{\var{bnf}.nf}80\li{class group, regulator}{\var{bnf}.clgp, \var{bnf}.reg}81\li{fundamental/torsion units}{\var{bnf}.fu{\rm, }\var{bnf}.tu}82\endindentedkeys83\li{add $S$-class group and units, yield \var{bnf}S}{bnfsunit$(\var{bnf},S)$}84\newcolumn8586\li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\{\fl\})$}87%88\subsec{bnr members: {\rm same as \var{bnf}, plus}}89\beginindentedkeys90\li{underlying \var{bnf}}{\var{bnr}.bnf}91\li{big ideal structure}{\var{bnr}.bid}92\li{modulus $m$}{\var{bnr}.mod}93\li{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}94\endindentedkeys9596\smallskip97\section{Fields, subfields, embeddings}98\subsec{Defining polynomials, embeddings}99\li{(some) number fields with Galois group $G$}{nflist$(G)$}100\li{\dots and $|\text{disc}(K)| = N$ and $s$ complex places}{nflist$(G, N, \{s\})$}101\li{\dots and $a \leq |\text{disc}(K)| \leq b$}{nflist$(G, [a,b], \{s\})$}102\li{smallest poly defining $f=0$ (slow)}{polredabs$(f,\{\fl\})$}103\li{small poly defining $f=0$ (fast)}{polredbest$(f,\{\fl\})$}104\li{random Tschirnhausen transform of $f$}{poltschirnhaus$(f)$}105\li{$\QQ[t]/(f) \subset \QQ[t]/(g)$ ? Isomorphic?}106{nfisincl$(f,g)$, \kbd{nfisisom}}107\li{reverse polmod $a=A(t)\mod T(t)$}{modreverse$(a)$}108\li{compositum of $\QQ[t]/(f)$, $\QQ[t]/(g)$}{polcompositum$(f,g,\{\fl\})$}109\li{compositum of $K[t]/(f)$, $K[t]/(g)$}{nfcompositum$(\var{nf}, f,g,\{\fl\})$}110\li{splitting field of $K$ (degree divides $d$)}111{nfsplitting$(\var{nf},\{d\})$}112\li{signs of real embeddings of $x$}{nfeltsign$(\var{nf},x,\{pl\})$}113\li{complex embeddings of $x$}{nfeltembed$(\var{nf},x,\{pl\})$}114\li{$T\in K[t]$, \# of real roots of $\sigma(T)\in\R[t]$}{nfpolsturm$(\var{nf},T,\{pl\})$}115116\smallskip117\subsec{Subfields, polynomial factorization}118\li{subfields (of degree $d$) of \var{nf}}{nfsubfields$(\var{nf},\{d\})$}119\li{maximal subfields of \var{nf}}{nfsubfieldsmax$(\var{nf})$}120\li{maximal CM subfield of \var{nf}}{nfsubfieldscm$(\var{nf})$}121\li{$d$-th degree subfield of $\QQ(\zeta_n)$} {polsubcyclo$(n,d,\{v\})$}122\li{roots of unity in \var{nf}}{nfrootsof1$(\var{nf}\,)$}123\li{roots of $g$ belonging to \var{nf}}{nfroots$(\var{nf},g)$}124\li{factor $g$ in \var{nf}}{nffactor$(\var{nf},g)$}125126\smallskip127\subsec{Linear and algebraic relations}128\li{poly of degree $\le k$ with root $x\in\CC$}{algdep$(x,k)$}129\li{alg. dep. with pol.~coeffs for series $s$}{seralgdep$(s,x,y)$}130\li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}131132\section{Basic Number Field Arithmetic (nf)}133Number field elements are \typ{INT}, \typ{FRAC}, \typ{POL}, \typ{POLMOD}, or134\typ{COL} (on integral basis \kbd{\var{nf}.zk}).135\smallskip136\subsec{Basic operations}137\li{$x+y$}{nfeltadd$(\var{nf},x,y)$}138\li{$x\times y$}{nfeltmul$(\var{nf},x,y)$}139\li{$x^n$, $n\in \ZZ$}{nfeltpow$(\var{nf},x,n)$}140\li{$x / y$}{nfeltdiv$(\var{nf},x,y)$}141\li{$q = x$\kbd{\bs/}$y := $\kbd{round}$(x/y)$}{nfeltdiveuc$(\var{nf},x,y)$}142\li{$r = x$\kbd{\%}$y := x - (x$\kbd{\bs/}$y)y$}{nfeltmod$(\var{nf},x,y)$}143\li{\dots $[q,r]$ as above}{nfeltdivrem$(\var{nf},x,y)$}144\li{reduce $x$ modulo ideal $A$}{nfeltreduce$(\var{nf},x,A)$}145\li{absolute trace $\text{Tr}_{K/\QQ} (x)$}{nfelttrace$(\var{nf},x)$}146\li{absolute norm $\text{N}_{K/\QQ} (x)$}{nfeltnorm$(\var{nf},x)$}147148\smallskip149\subsec{Multiplicative structure of $K^*$; $K^*/(K^*)^n$}150\li{valuation $v_\p(x)$}{nfeltval$(\var{nf},x,\p)$}151\li{\dots write $x = \pi^{v_\p(x)} y$}{nfeltval$(\var{nf},x,\p,\&y)$}152\li{quadratic Hilbert symbol (at $\p$)}153{nfhilbert$(\var{nf},a,b,\{\p\})$}154\li{$b$ such that $x b^n = v$ is small}{idealredmodpower$(\var{nf},x,n)$}155156\smallskip157\subsec{Maximal order and discriminant}158\li{integral basis of field $\QQ[x]/(f)$}{nfbasis$(f)$}159\li{field discriminant of $\QQ[x]/(f)$}{nfdisc$(f)$}160\li{\dots and factorization}{nfdiscfactors$(f)$}161\li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}162\li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}163164\smallskip165\subsec{Dedekind Zeta Function $\zeta_K$, Hecke $L$ series}166$R = [c,w,h]$ in initialization means we restrict $s\in \CC$167to domain $|\Re(s)-c| < w$, $|\Im(s)| < h$; $R = [w,h]$ encodes $[1/2,w,h]$168and $[h]$ encodes $R = [1/2,0,h]$ (critical line up to height $h$).\hfil\break169\li{$\zeta_K$ as Dirichlet series, $N(I)<b$}{dirzetak$(\var{nf},b)$}170\li{init $\zeta_K^{(k)}(s)$ for $k \leq n$}171{L = lfuninit$(\var{bnf}, R, \{n = 0\})$}172\li{compute $\zeta_K(s)$ ($n$-th derivative)}{lfun$(L, s, \{n=0\})$}173\li{compute $\Lambda_K(s)$ ($n$-th derivative)}{lfunlambda$(L, s, \{n=0\})$}174\smallskip175176\li{init $L_K^{(k)}(s, \chi)$ for $k \leq n$}177{L = lfuninit$([\var{bnr},\var{chi}], R, \{n = 0\})$}178\li{compute $L_K(s, \chi)$ ($n$-th derivative)}{lfun$(L, s, \{n\})$}179\li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\{\fl\})$}180\li{$L(1,\chi)$, for all $\chi$ trivial on $H$}181{bnrL1$(\var{bnr},\{H\},\{\fl\})$}182183\section{Class Groups \& Units (bnf, bnr)}184Class field theory data $a_1,\{a_2\}$ is usually \var{bnr} (ray class field),185$\var{bnr},H$ (congruence subgroup) or $\var{bnr},\chi$ (character on186\kbd{bnr.clgp}). Any of these define a unique abelian extension of $K$.187188\li{units / $S$-units}{bnfunits$(\var{bnf},\{S\})$}189\li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}190\li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\{\fl\})$}191\li{expo.~of ideal $x$ on ray class gp}{bnrisprincipal$(\var{bnr},x,\{\fl\})$}192\li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}193\li{\dots on $S$-units, $U$ is \kbd{bnfunits}$(\var{bnf},S)$}194{bnfisunit$(\var{bnfs},x,U)$}195\li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}196\li{narrow class group}{bnfnarrow$(\var{bnf})$}197198\smallskip199\subsec{Class Field Theory}200\li{ray class number for modulus $m$}{bnrclassno$(\var{bnf},m)$}201\li{discriminant of class field}{bnrdisc$(a_1,\{a_2\})$}202\li{ray class numbers, $l$ list of moduli}{bnrclassnolist$(\var{bnf},l)$}203\li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\{\fl\})$}204\li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}205\li{is modulus the conductor?}{bnrisconductor$(a_1,\{a_2\})$}206\li{is class field $(\var{bnr},H)$ Galois over $K^G$}207{bnrisgalois$(\var{bnr},G,H)$}208\li{action of automorphism on \kbd{bnr.gen}}209{bnrgaloismatrix$(\var{bnr},\var{aut})$}210\li{apply \kbd{bnrgaloismatrix} $M$ to $H$}211{bnrgaloisapply$(\var{bnr},M,H)$}212\li{characters on \kbd{bnr.clgp} s.t. $\chi(g_i) = e(v_i)$}213{bnrchar$(\var{bnr},g,\{v\})$}214\li{conductor of character $\chi$}{bnrconductor$(\var{bnr},\var{chi})$}215\li{conductor of extension}{bnrconductor$(a_1,\{a_2\},\{\fl\})$}216\li{conductor of extension $K[Y]/(g)$}{rnfconductor$(\var{bnf},g)$}217\li{canonical projection $\text{Cl}_F\to\text{Cl}_f$, $f\mid F$}{bnrmap}218\li{Artin group of extension $K[Y]/(g)$}{rnfnormgroup$(\var{bnr},g)$}219\li{subgroups of \var{bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\{\fl\})$}220\li{class field defined by $H < \text{Cl}_f$}{bnrclassfield$(\var{bnr},H)$}221\li{\dots low level equivalent, prime degree}{rnfkummer$(\var{bnr},H)$}222\li{same, using Stark units (real field)}{bnrstark$(\var{bnr},sub,\{\fl\})$}223\li{is $a$ an $n$-th power in $K_v$ ?}{nfislocalpower$(\var{nf},v,a,n)$}224\li{cyclic $L/K$ satisf. local conditions}225{nfgrunwaldwang$(\var{nf},P,D,\var{pl})$}226\shortcopyrightnotice227\newcolumn228\subsec{Logarithmic class group}229\li{logarithmic $\ell$-class group}{bnflog$(\var{bnf},\ell)$}230\li{$[\tilde{e}(F_v/\Q_p),\tilde{f}(F_v/\Q_p)]$}231{bnflogef$(\var{bnf},\var{pr})$}232\li{$\exp \deg_F(A)$}{bnflogdegree$(\var{bnf}, A, \ell)$}233\li{is $\ell$-extension $L/K$ locally cyclotomic}{rnfislocalcyclo$(\var{rnf})$}234235\section{Ideals: {\rm elements, primes, or matrix of generators in HNF}}236\li{is $id$ an ideal in \var{nf} ?}{nfisideal$(\var{nf},id)$}237\li{is $x$ principal in \var{bnf} ?}{bnfisprincipal$(\var{bnf},x)$}238\li{give $[a,b]$, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}239\li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}240\li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}241\li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}242\li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}243244\smallskip245\subsec{Ideal Operations}246\li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}247\li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\{\fl\})$}248\li{intersection of ideal $x$ with $\Q$}{idealdown$(\var{nf},x)$}249\li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\{\fl\})$}250\li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\{\fl\})$}251\li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}252\li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\{\fl\})$}253\li{Find $(a,b)\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}254\li{coprime integral $A,B$ such that $x=A/B$}{idealnumden$(\var{nf},x)$}255256\smallskip257\subsec{Primes and Multiplicative Structure}258\li{check whether $x$ is a maximal ideal}{idealismaximal$(\var{nf},x)$}259\li{factor ideal $x$ in $\ZZ_K$}{idealfactor$(\var{nf},x)$}260\li{expand ideal factorization in $K$}{idealfactorback$(\var{nf},f,\{e\})$}261\li{is ideal $A$ an $n$-th power ?}{idealispower$(\var{nf},A,n)$}262\li{expand elt factorization in $K$}{nffactorback$(\var{nf},f,\{e\})$}263\li{decomposition of prime $p$ in $\ZZ_K$}{idealprimedec$(\var{nf},p)$}264\li{valuation of $x$ at prime ideal \var{pr}}{idealval$(\var{nf},x,\var{pr})$}265\li{weak approximation theorem in \var{nf}}{idealchinese$(\var{nf},x,y)$}266\li{$a\in K$, s.t. $v_{\p}(a) = v_{\p}(x)$ if267$v_{\p}(x)\neq 0$}268{idealappr$(\var{nf},x)$}269\li{$a\in K$ such that $(a\cdot x, y) = 1$}{idealcoprime$(\var{nf},x,y)$}270\li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\{\fl\})$}271\li{structure of $(1+\p) / (1+\p^k)$}272{idealprincipalunits$(\var{nf},\var{pr},k)$}273\li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}274\li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\{\fl\})$}275\li{add Archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\{\fl\})$}276277\li{init \kbd{modpr} structure}{nfmodprinit$(\var{nf},\var{pr},\{v\})$}278\li{project $t$ to $\ZZ_K/\var{pr}$}{nfmodpr$(\var{nf},t,\var{modpr})$}279\li{lift from $\ZZ_K/\var{pr}$}{nfmodprlift$(\var{nf},t,\var{modpr})$}280281\section{Galois theory over $\QQ$}282\li{conjugates of a root $\theta$ of \var{nf}}{nfgaloisconj$(\var{nf},\{\fl\})$}283\li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}284\li{Galois group of field $\QQ[x]/(f)$}{polgalois$(f)$}285\li{resolvent field of $\QQ[x]/(f)$}{nfresolvent$(f)$}286\li{initializes a Galois group structure $G$}{galoisinit$(\var{pol},\{den\})$}287\li{\dots for the splitting field of \var{pol}}{galoissplittinginit$(\var{pol},\{d\})$}288\li{character table of $G$}{galoischartable$(G)$}289\li{conjugacy classes of $G$}{galoisconjclasses$(G)$}290\li{$\det(1 - \rho(g)T)$, $\chi$ character of $\rho$}291{galoischarpoly$(G,\chi,\{o\})$}292\li{$\det(\rho(g))$, $\chi$ character of $\rho$}293{galoischardet$(G,\chi,\{o\})$}294\li{action of $p$ in nfgaloisconj form}{galoispermtopol$(G,\{p\})$}295\li{identify as abstract group}{galoisidentify$(G)$}296\li{export a group for GAP/MAGMA}{galoisexport$(G,\{\fl\})$}297\li{subgroups of the Galois group $G$}{galoissubgroups$(G)$}298\li{is subgroup $H$ normal?}{galoisisnormal$(G,H)$}299300\newcolumn301\title{\TITLE}302\centerline{(PARI-GP version \PARIversion)}303304\medskip305306\li{subfields from subgroups}{galoissubfields$(G,\{\fl\},\{v\})$}307\li{fixed field}{galoisfixedfield$(G,\var{perm},\{\fl\},\{v\})$}308\li{Frobenius at maximal ideal $P$}{idealfrobenius$(\var{nf},G,P)$}309\li{ramification groups at $P$}{idealramgroups$(\var{nf},G,P)$}310\li{is $G$ abelian?}{galoisisabelian$(G,\{\fl\})$}311\li{abelian number fields/$\QQ$}{galoissubcyclo(N,H,\{\fl\},\{v\})}312313\subsec{The \kbd{galpol} package}314\li{query the package: polynomial}{galoisgetpol(a,b,\{s\})}315\li{\dots : permutation group}{galoisgetgroup(a,{b})}316\li{\dots : group description}{galoisgetname(a,b)}317318\section{Relative Number Fields (rnf)}319Extension $L/K$ is defined by $T\in K[x]$.320\hfill\break321%322\li{absolute equation of $L$}{rnfequation$(\var{nf},T,\{\fl\})$}323\li{is $L/K$ abelian?}{rnfisabelian$(\var{nf},T)$}324\li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}325\li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}326\li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}327\li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}328\li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}329330\smallskip331\subsec{Lifts and Push-downs}332\li{absolute $\rightarrow$ relative representation for $x$}333{rnfeltabstorel$(\var{rnf},x)$}334\li{relative $\rightarrow$ absolute representation for $x$}335{rnfeltreltoabs$(\var{rnf},x)$}336\li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}337\li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}338\leavevmode idem for $x$ ideal:339\kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hfill340341\smallskip342\subsec{Norms and Trace}343\li{relative norm of element $x\in L$}{rnfeltnorm$(\var{rnf},x)$}344\li{relative trace of element $x\in L$}{rnfelttrace$(\var{rnf},x)$}345\li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}346\li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}347\li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}348\li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\{\fl\})$}349\li{initialize $T$ for norm eq.~solver}{rnfisnorminit$(K,pol,\{\fl\})$}350\li{is $a\in K$ a norm from $L$?}{rnfisnorm$(T,a,\{\fl\})$}351\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}352\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}353\li{characteristic poly.\ of $a$ mod $T$}{rnfcharpoly$(\var{nf},T,a,\{v\})$}354355\smallskip356\subsec{Factorization}357\li{factor ideal $x$ in $L$}{rnfidealfactor$(\var{rnf},x)$}358\li{$[S,T] \colon T_{i,j} \mid S_i$; $S$ primes of $K$ above $p$}359{rnfidealprimedec$(\var{rnf},p)$}360361\smallskip362\subsec{Maximal order $\ZZ_L$ as a $\ZZ_K$-module}363\li{relative {\tt polredbest}}{rnfpolredbest$(\var{nf},T)$}364\li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},T)$}365\li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},T,pr)$}366\li{discriminant of relative extension}{rnfdisc$(\var{nf},T)$}367\li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},T)$}368369\smallskip370\subsec{General $\ZZ_K$-modules:371{\rm $M = [{\rm matrix}, {\rm vec.~of~ideals}] \subset L$}}372\li{relative HNF / SNF}{nfhnf$(\var{nf},M)${\rm, }nfsnf}373\li{multiple of $\det M$}{nfdetint$(\var{nf},M)$}374\li{HNF of $M$ where $d = \kbd{nfdetint}(M)$}{nfhnfmod$(x,d)$}375\li{reduced basis for $M$}{rnflllgram$(\var{nf},T,M)$}376\li{determinant of pseudo-matrix $M$}{rnfdet$(\var{nf},M)$}377\li{Steinitz class of $M$}{rnfsteinitz$(\var{nf},M)$}378\newcolumn379380381\li{$\ZZ_K$-basis of $M$ if $\ZZ_K$-free, or $0$}{rnfhnfbasis$(\var{bnf},M)$}382\li{$n$-basis of $M$, or $(n+1)$-generating set}{rnfbasis$(\var{bnf},M)$}383\li{is $M$ a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},M)$}384385\section{Associative Algebras}386$A$ is a general associative algebra given by a multiplication table \var{mt}387(over $\QQ$ or $\FF_p$); represented by \var{al} from \kbd{algtableinit}.388389\li{create \var{al} from \var{mt} (over $\FF_p$)}390{algtableinit$(\var{mt},\{p=0\})$}391\li{group algebra $\QQ[G]$ (or $\FF_p[G]$)}{alggroup$(G,\{p = 0\})$}392\li{center of group algebra}{alggroupcenter$(G,\{p = 0\})$}393394\smallskip395\subsec{Properties}396\li{is $(\var{mt},p)$ OK for algtableinit?}397{algisassociative$(\var{mt},\{p=0\})$}398\li{multiplication table \var{mt}}{algmultable$(\var{al})$}399\li{dimension of $A$ over prime subfield}{algdim$(\var{al})$}400\li{characteristic of $A$}{algchar$(\var{al})$}401\li{is $A$ commutative?}{algiscommutative$(\var{al})$}402\li{is $A$ simple?}{algissimple$(\var{al})$}403\li{is $A$ semi-simple?}{algissemisimple$(\var{al})$}404\li{center of $A$}{algcenter$(\var{al})$}405\li{Jacobson radical of $A$}{algradical$(\var{al})$}406\li{radical $J$ and simple factors of $A/J$}{algsimpledec$(\var{al})$}407408\smallskip409\subsec{Operations on algebras}410\li{create $A/I$, $I$ two-sided ideal}{algquotient$(\var{al},I)$}411\li{create $A_1\otimes A_2$}{algtensor$(\var{al1}, \var{al2})$}412\li{create subalgebra from basis $B$}{algsubalg$(\var{al}, B)$}413\li{quotients by ortho. central idempotents $e$}414{algcentralproj$(\var{al}, e)$}415\li{isomorphic alg. with integral mult. table}{algmakeintegral(\var{mt})}416\li{prime subalgebra of semi-simple $A$ over $\FF_p$}417{algprimesubalg$(\var{al})$}418\li{find isomorphism~$A\cong M_d(\FF_q)$}{algsplit(\var{al})}419420\smallskip421\subsec{Operations on lattices in algebras}422\li{lattice generated by cols. of $M$}{alglathnf$(\var{al},M)$}423\li{\dots by the products~$xy$, $x\in lat1$, $y\in lat2$}{alglatmul$(\var{al},\var{lat1},\var{lat2})$}424\li{sum $lat1+lat2$ of the lattices}{alglatadd$(\var{al},\var{lat1},\var{lat2})$}425\li{intersection $lat1\cap lat2$}{alglatinter$(\var{al},\var{lat1},\var{lat2})$}426\li{test~$lat1\subset lat2$}{alglatsubset$(\var{al},\var{lat1},\var{lat2})$}427\li{generalized index~$(lat2:lat1)$}{alglatindex$(\var{al},\var{lat1},\var{lat2})$}428\li{$\{x\in al\mid x\cdot lat1\subset lat2\}$}{alglatlefttransporter$(\var{al},\var{lat1},\var{lat2})$}429\li{$\{x\in al\mid lat1\cdot x\subset lat2\}$}{alglatrighttransporter$(\var{al},\var{lat1},\var{lat2})$}430\li{test~$x\in lat$ (set~$c =$ coord. of~$x$)}{alglatcontains$(\var{al},\var{lat},x,\{\& c\})$}431\li{element of~$lat$ with coordinates~$c$}{alglatelement$(\var{al},\var{lat},c)$}432\subsec{Operations on elements}433\li{$a+b$, $a-b$, $-a$}{algadd$(\var{al},a,b)${\rm, }algsub{\rm, }algneg}434\li{$a\times b$, $a^2$}{algmul$(\var{al},a,b)${\rm, }algsqr}435\li{$a^n$, $a^{-1}$}{algpow$(\var{al},a,n)${\rm, }alginv}436\li{is $x$ invertible ? (then set $z=x^{-1}$)}{algisinv$(\var{al},x,\{\&z\})$}437\li{find $z$ such that $x\times z = y$}{algdivl$(\var{al},x,y)$}438\li{find $z$ such that $z\times x = y$}{algdivr$(\var{al},x,y)$}439\li{does $z$ s.t. $x\times z = y$ exist? (set it)}440{algisdivl$(\var{al},x,y,\{\&z\})$}441\li{matrix of $v\mapsto x\cdot v$}{algtomatrix$(\var{al}, x)$}442\li{absolute norm}{algnorm$(\var{al},x)$}443\li{absolute trace}{algtrace$(\var{al},x)$}444\li{absolute char. polynomial}{algcharpoly$(\var{al},x)$}445\li{given $a\in A$ and polynomial $T$, return $T(a)$}446{algpoleval$(\var{al},T,a)$}447\li{random element in a box}{algrandom$(\var{al}, b)$}448\vfill449\copyrightnotice450\newcolumn451452\section{Central Simple Algebras}453$A$ is a central simple algebra over a number field $K$; represented by454\var{al} from \kbd{alginit}; $K$ is given by a \var{nf} structure.455456\li{create CSA from data}457{alginit$(B,C,\{v\},\{maxord=1\})$}458\beginindentedkeys459\li{multiplication table over $K$}{$B = K${\rm, }$C = \var{mt}$}460\li{cyclic algebra $(L/K,\sigma,b)$}461{$B = \var{rnf}${\rm, }$C = [\var{sigma},b]$}462\li{quaternion algebra $(a,b)_K$}{$B = K$, $C = [a,b]$}463\li{matrix algebra $M_d(K)$}{$B = K$, $C = d$}464\li{local Hasse invariants over $K$}465{$B = K$, $C = [d, [\var{PR}, \var{HF}], \var{HI}]$}466\endindentedkeys467468\smallskip469\subsec{Properties}470\li{type of \var{al} (\var{mt}, CSA)}{algtype$(\var{al})$}471\li{dimension of $A$ over~$\QQ$}{algdim$(\var{al},1)$}472\li{dimension of \var{al} over its center~$K$}{algdim$(\var{al})$}473\li{degree of $A$ ($=\sqrt{\dim_K A}$)}{algdegree$(\var{al})$}474\li{\var{al} a cyclic algebra $(L/K,\sigma,b)$; return $\sigma$}475{algaut$(\var{al})$}476\li{\dots return $b$}{algb$(\var{al})$}477\li{\dots return $L/K$, as an \var{rnf}}478{algsplittingfield$(\var{al})$}479\li{split $A$ over an extension of $K$}{algsplittingdata$(\var{al})$}480\li{splitting field of $A$ as an \var{rnf} over center}481{algsplittingfield$(\var{al})$}482\li{multiplication table over center}{algrelmultable$(\var{al})$}483\li{places of $K$ at which $A$ ramifies}{algramifiedplaces$(\var{al})$}484\li{Hasse invariants at finite places of $K$}{alghassef$(\var{al})$}485\li{Hasse invariants at infinite places of $K$}{alghassei$(\var{al})$}486\li{Hasse invariant at place $v$}{alghasse$(\var{al},v)$}487\li{index of $A$ over $K$ (at place $v$)}{algindex$(\var{al},\{v\})$}488\li{is \var{al} a division algebra? (at place $v$)}489{algisdivision$(\var{al},\{v\})$}490\li{is $A$ ramified? (at place $v$)}{algisramified$(\var{al},\{v\})$}491\li{is $A$ split? (at place $v$)}{algissplit$(\var{al},\{v\})$}492493\smallskip494\subsec{Operations on elements}495\li{reduced norm}{algnorm$(\var{al},x)$}496\li{reduced trace}{algtrace$(\var{al},x)$}497\li{reduced char. polynomial}{algcharpoly$(\var{al},x)$}498\li{express $x$ on integral basis}{algalgtobasis$(\var{al},x)$}499\li{convert $x$ to algebraic form}{algbasistoalg$(\var{al},x)$}500\li{map $x\in A$ to $M_d(L)$, $L$ split. field} {algtomatrix$(\var{al},x)$}501502\smallskip503\subsec{Orders}504\li{$\ZZ$-basis of order ${\cal O}_0$}{algbasis$(\var{al})$}505\li{discriminant of order ${\cal O}_0$}{algdisc$(\var{al})$}506\li{$\ZZ$-basis of natural order in terms ${\cal O}_0$'s basis}507{alginvbasis$(\var{al})$}508509\vfill510\copyrightnotice511\bye512513514