Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Testing latest pari + WASM + node.js... and it works?! Wow.

28495 views
License: GPL3
ubuntu2004
1
\\ adapted from an original idea by Ilya Zakharevich
2
3
\\ generate an RGB color triple from a "magnitude" between 0 and 255
4
\\ (low = close to a cold blue, high = close to a hot red).
5
\\ To generate simple colormaps.
6
rgb(mag) =
7
{ my(x = mag/255., B, G, R);
8
B = min(max(4*(0.75-x), 0), 1);
9
R = min(max(4*(x-0.25), 0), 1);
10
G = min(max(4*abs(x-0.5)-1, 0), 1);
11
return (floor([R, G, B]*255));
12
}
13
default(graphcolormap, concat(["white","black","blue"], vector(25,i,rgb(10*i))));
14
default(graphcolors, vector(25,i,i+2));
15
16
\\ plot Taylor polynomials of f,
17
\\ of index first + i*step <= ordlim, for x in [xmin,xmax].
18
plot_taylor(f, xmin=-5, xmax=5, ordlim=16, first=1, step=1) =
19
{
20
my(T,s,t,w,h,dw,dh,cw,ch,gh, extrasize = 0.6);
21
my(Taylor_array);
22
23
default(seriesprecision,ordlim+1);
24
T = f('q);
25
ordlim = (ordlim-first)\step + first;
26
Taylor_array = vector(ordlim+1);
27
forstep(i=ordlim+1, 1, -1,
28
T += O('q^(1 + first + (i-1)*step));
29
Taylor_array[i] = truncate(T)
30
);
31
32
t = plothsizes();
33
w=floor(t[1]*0.9)-2; dw=floor(t[1]*0.05)+1; cw=t[5];
34
h=floor(t[2]*0.9)-2; dh=floor(t[2]*0.05)+1; ch=t[6];
35
36
plotinit(2, w+2*dw, h+2*dh);
37
plotinit(3, w, floor(h/1.2));
38
\\ few points (but Recursive!), to determine bounding box
39
s = plotrecth(3, x=xmin,xmax, f(x),
40
"Recursive|no_X_axis|no_Y_axis|no_Frame", 16);
41
gh=s[4]-s[3];
42
43
plotinit(3, w, h);
44
plotscale(3, s[1], s[2], s[3]-gh*extrasize/2, s[4]+gh*extrasize/2);
45
plotrecth(3, x=xmin,xmax, subst(Taylor_array, 'q, x), "no_Rescale");
46
plotclip(3);
47
plotcopy(3, 2, dw, dh);
48
49
plotmove(2, floor(dw+w/2-15*cw), floor(dh/2));
50
plotstring(2, "Multiple Taylor Approximations");
51
plotdraw(2);
52
}
53
54
\p9
55
plot_taylor(sin)
56
plot_taylor(exp,-3,3)
57
plot_taylor(x->besselk(2,x), 1,5)
58
plot_taylor(x->1/(1+x^2), -1.2,1.2)
59
60