Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: random
Section: conversions
C-Name: genrand
Prototype: DG
Help: random({N=2^31}): random object, depending on the type of N.
Integer between 0 and N-1 (t_INT), int mod N (t_INTMOD), element in a finite
field (t_FFELT), point on an elliptic curve (ellinit mod p or over a finite
field).
Description:
(?int):int genrand($1)
(real):real genrand($1)
(gen):gen genrand($1)
Doc:
returns a random element in various natural sets depending on the
argument $N$.
\item \typ{INT}: returns an integer
uniformly distributed between $0$ and $N-1$. Omitting the argument
is equivalent to \kbd{random(2\pow31)}.
\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).
\item \typ{INTMOD}: returns a random intmod for the same modulus.
\item \typ{FFELT}: returns a random element in the same finite field.
\item \typ{VEC} of length $2$, $N = [a,b]$: returns an integer uniformly
distributed between $a$ and $b$.
\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
``random'' $k$-rational \emph{affine} point on the curve. More precisely
if the curve has a single point (at infinity!) we return it; otherwise
we return an affine point by drawing an abscissa uniformly at
random until \tet{ellordinate} succeeds. Note that this is definitely not a
uniform distribution over $E(k)$, but it should be good enough for
applications.
\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.
\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
@eprog
These variants all depend on a single internal generator, and are
independent from your operating system's random number generators.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem. Note that
internal functions also call the random number generator; adding such a
function call in the middle of your code will change the numbers produced.
\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\url{http://wwwmaths.anu.edu.au/~brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.
Variant:
Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.