Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: galoisinit
Section: number_fields
C-Name: galoisinit
Prototype: GDG
Help: galoisinit(pol,{den}): pol being a polynomial or a number field as
output by nfinit defining a Galois extension of Q, compute the Galois group
and all necessary information for computing fixed fields. den is optional
and has the same meaning as in nfgaloisconj(,4)(see manual).
Description:
(gen, ?int):gal galoisinit($1, $2)
Doc: computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $48$ is Galois or not.
The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series
$\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_n$
such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
$G/H_n$ is isomorphic to either $A_4$, $S_4$ or the group
$(3\times 3):4$ (\kbd{GAP4(36,9)}) then
$[o_1,\ldots,o_g]$ ends by $[3,3,4]$.
In practice, almost all small groups are WKSS, the exceptions having order
48(2), 56(1), 60(1), 72(3), 75(1), 80(1), 96(10), 112(1), 120(3) and $\geq 144$.
This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:
\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog
The output is an 8-component vector \var{gal}.
$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).
$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.
$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).
$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.
$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).
$\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
$\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).
Let $H_n$ be as above, we have the following properties:
\quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3]$.
\quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3,2]$.
\quad\item if $G/H_n\simeq (3\times 3):4$ (\kbd{GAP4(36,9)}) then
$[o_1,\ldots,o_g]$ ends by $[3,3,4]$.
\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_1,\ldots,s_i]$ is normal, with the exception of $i=g-2$ in the
$A_4$ case and of $i=g-3$ in the $S_4$ case.
\quad\item the relative order $o_i$ of $s_i$ is its order in the
quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
exceptions.
\quad\item for any $x\in G$ there exists a unique family
$[e_1,\ldots,e_g]$ such that (no exceptions):
-- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
-- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
If present $den$ must be a suitable value for $\var{gal}[5]$.