Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
555 views
from sympy import * from sympy.physics.units import * from sympy import N as Num symbolic = True # symbolic = False if symbolic: F = var("F") a, b = var("a, b") t = var("t") else: F = 1000 * newton a, b = 3*m, 2*m t = 1*cm print("\n--- zS: -------------------------------") (A1, A2, A3) = (2*t*t, 2*t*t, 4*t*t) (z1, z2, z3) = (2*t, 2*t, t/2) zS = z1*A1 + z2*A2 + z3*A3 A = A1 + A2 + A3 zS /= A print("\n--- Iy: -------------------------------") Iy1 = t * (2*t)**3 / 12 Iy2 = Iy1 Iy3 = 4*t * t**3 / 12 # Steiner: Iy = Iy1 + (z1-zS)**2*A1 Iy += Iy2 + (z2-zS)**2*A2 Iy += Iy3 + (z3-zS)**2*A3 pprint("\nIy:") pprint(Iy) print("\n--- Q,M,N: ---------------------------") M = b*F Nx = -F sig_N = Nx / A pprint("\nsig_N:") pprint(sig_N) z = 7*t/4 sig_M = M/Iy * z pprint("\nsig_M:") pprint(sig_M) sig = sig_N + sig_M pprint("\nsig:") pprint(sig) print("\n---- sig and tau: --------------------") Q = - b/a * F zR = 7*t/8 AR = 7*t/4 * t SyR = zR*AR # SyR via integration: s = var("s") f = (7*t/4 - s)*t SyR_f = integrate(f, (s, 0, 7*t/4)) SyR_f = integrate(f, s) # Cousinenformel: tau = - Q*SyR/Iy/t tau = tau.simplify() pprint("\ntau:") pprint(tau) # pprint(["tau:", tau]) if not (symbolic): pprint("\nsig / MPa:") sigMPa = sig/mega/pascal pprint(Num(sigMPa,3)) pprint("\ntau / MPa:") tauMPa = tau/mega/pascal pprint(Num(tauMPa,3))
--- zS: ------------------------------- --- Iy: ------------------------------- Iy: 4 37*t ----- 6 --- Q,M,N: --------------------------- sig_N: -F ---- 2 8*t sig_M: 21*F*b ------ 3 74*t sig: 21*F*b F ------ - ---- 3 2 74*t 8*t ---- sig and tau: -------------------- tau: 147*F*b -------- 2 592*a*t