Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel: Python 2

Basic Operations in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

import tensorflow as tf
# Basic constant operations # The value returned by the constructor represents the output # of the Constant op. a = tf.constant(2) b = tf.constant(3)
# Launch the default graph. with tf.Session() as sess: print "a=2, b=3" print "Addition with constants: %i" % sess.run(a+b) print "Multiplication with constants: %i" % sess.run(a*b)
a=2, b=3 Addition with constants: 5 Multiplication with constants: 6
# Basic Operations with variable as graph input # The value returned by the constructor represents the output # of the Variable op. (define as input when running session) # tf Graph input a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16)
# Define some operations add = tf.add(a, b) mul = tf.mul(a, b)
# Launch the default graph. with tf.Session() as sess: # Run every operation with variable input print "Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3}) print "Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})
Addition with variables: 5 Multiplication with variables: 6
# ---------------- # More in details: # Matrix Multiplication from TensorFlow official tutorial # Create a Constant op that produces a 1x2 matrix. The op is # added as a node to the default graph. # # The value returned by the constructor represents the output # of the Constant op. matrix1 = tf.constant([[3., 3.]])
# Create another Constant that produces a 2x1 matrix. matrix2 = tf.constant([[2.],[2.]])
# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs. # The returned value, 'product', represents the result of the matrix # multiplication. product = tf.matmul(matrix1, matrix2)
# To run the matmul op we call the session 'run()' method, passing 'product' # which represents the output of the matmul op. This indicates to the call # that we want to get the output of the matmul op back. # # All inputs needed by the op are run automatically by the session. They # typically are run in parallel. # # The call 'run(product)' thus causes the execution of threes ops in the # graph: the two constants and matmul. # # The output of the op is returned in 'result' as a numpy `ndarray` object. with tf.Session() as sess: result = sess.run(product) print result
[[ 12.]]