📚 The CoCalc Library - books, templates and other resources
cocalc-examples / data-science-ipython-notebooks / deep-learning / tensor-flow-examples / notebooks / 2_basic_classifiers / linear_regression.ipynb
132930 viewsLicense: OTHER
Kernel: Python 3
Linear Regression in TensorFlow
Credits: Forked from TensorFlow-Examples by Aymeric Damien
Setup
Refer to the setup instructions
In [2]:
In [3]:
In [4]:
In [5]:
In [6]:
In [7]:
In [8]:
In [9]:
In [22]:
Out[22]:
Epoch: 0001 cost= 3.389688730 W= 0.0198441 b= -0.273522
Epoch: 0051 cost= 0.134034902 W= 0.383208 b= -0.159746
Epoch: 0101 cost= 0.127440125 W= 0.375261 b= -0.102578
Epoch: 0151 cost= 0.121607177 W= 0.367787 b= -0.0488099
Epoch: 0201 cost= 0.116448022 W= 0.360758 b= 0.00175997
Epoch: 0251 cost= 0.111884907 W= 0.354146 b= 0.0493223
Epoch: 0301 cost= 0.107848980 W= 0.347928 b= 0.0940558
Epoch: 0351 cost= 0.104279339 W= 0.34208 b= 0.136129
Epoch: 0401 cost= 0.101122171 W= 0.336579 b= 0.1757
Epoch: 0451 cost= 0.098329842 W= 0.331405 b= 0.212917
Epoch: 0501 cost= 0.095860250 W= 0.32654 b= 0.247921
Epoch: 0551 cost= 0.093676031 W= 0.321963 b= 0.280843
Epoch: 0601 cost= 0.091744311 W= 0.317659 b= 0.311807
Epoch: 0651 cost= 0.090035893 W= 0.313611 b= 0.340929
Epoch: 0701 cost= 0.088524953 W= 0.309804 b= 0.36832
Epoch: 0751 cost= 0.087188691 W= 0.306222 b= 0.394082
Epoch: 0801 cost= 0.086007021 W= 0.302854 b= 0.418311
Epoch: 0851 cost= 0.084961981 W= 0.299687 b= 0.441099
Epoch: 0901 cost= 0.084037818 W= 0.296708 b= 0.462532
Epoch: 0951 cost= 0.083220571 W= 0.293905 b= 0.48269
Epoch: 1001 cost= 0.082497880 W= 0.29127 b= 0.50165
Epoch: 1051 cost= 0.081858821 W= 0.288791 b= 0.519481
Epoch: 1101 cost= 0.081293717 W= 0.28646 b= 0.536251
Epoch: 1151 cost= 0.080794014 W= 0.284267 b= 0.552026
Epoch: 1201 cost= 0.080352172 W= 0.282205 b= 0.566861
Epoch: 1251 cost= 0.079961479 W= 0.280265 b= 0.580815
Epoch: 1301 cost= 0.079616025 W= 0.278441 b= 0.593939
Epoch: 1351 cost= 0.079310589 W= 0.276725 b= 0.606284
Epoch: 1401 cost= 0.079040587 W= 0.275111 b= 0.617893
Epoch: 1451 cost= 0.078801893 W= 0.273594 b= 0.62881
Epoch: 1501 cost= 0.078590907 W= 0.272167 b= 0.639077
Epoch: 1551 cost= 0.078404360 W= 0.270824 b= 0.648734
Epoch: 1601 cost= 0.078239456 W= 0.269562 b= 0.657817
Epoch: 1651 cost= 0.078093678 W= 0.268374 b= 0.66636
Epoch: 1701 cost= 0.077964827 W= 0.267257 b= 0.674395
Epoch: 1751 cost= 0.077850945 W= 0.266207 b= 0.681952
Epoch: 1801 cost= 0.077750273 W= 0.265219 b= 0.68906
Epoch: 1851 cost= 0.077661335 W= 0.264289 b= 0.695745
Epoch: 1901 cost= 0.077582702 W= 0.263416 b= 0.702033
Epoch: 1951 cost= 0.077513263 W= 0.262593 b= 0.707947
Optimization Finished!
cost= 0.077453 W= 0.261835 b= 0.713401
In [23]:
Out[23]: