Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel: Python 3

Logistic Regression in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
import tensorflow as tf
# Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1
# tf Graph Input x = tf.placeholder("float", [None, 784]) # mnist data image of shape 28*28=784 y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes
# Create model # Set model weights W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10]))
# Construct model activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
# Minimize error using cross entropy # Cross entropy cost = -tf.reduce_sum(y*tf.log(activation)) # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables init = tf.initialize_all_variables()
# Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test model correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
Epoch: 0001 cost= 29.860479714 Epoch: 0002 cost= 22.080549484 Epoch: 0003 cost= 21.237104595 Epoch: 0004 cost= 20.460196280 Epoch: 0005 cost= 20.185128237 Epoch: 0006 cost= 19.940297202 Epoch: 0007 cost= 19.645111119 Epoch: 0008 cost= 19.507218031 Epoch: 0009 cost= 19.389794492 Epoch: 0010 cost= 19.177005816 Epoch: 0011 cost= 19.082493615 Epoch: 0012 cost= 19.072873598 Epoch: 0013 cost= 18.938005402 Epoch: 0014 cost= 18.891806430 Epoch: 0015 cost= 18.839480221 Epoch: 0016 cost= 18.769349510 Epoch: 0017 cost= 18.590865587 Epoch: 0018 cost= 18.623413677 Epoch: 0019 cost= 18.546149085 Epoch: 0020 cost= 18.432274895 Epoch: 0021 cost= 18.358189004 Epoch: 0022 cost= 18.380014628 Epoch: 0023 cost= 18.499993471 Epoch: 0024 cost= 18.386477311 Epoch: 0025 cost= 18.258080609 Optimization Finished! Accuracy: 0.9048