Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel: Python 2

Convolutional Neural Network in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
import tensorflow as tf
# Parameters learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 20
# Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units
# tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create model def conv2d(img, w, b): return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME'),b)) def max_pool(img, k): return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') def conv_net(_X, _weights, _biases, _dropout): # Reshape input picture _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # Convolution Layer conv1 = conv2d(_X, _weights['wc1'], _biases['bc1']) # Max Pooling (down-sampling) conv1 = max_pool(conv1, k=2) # Apply Dropout conv1 = tf.nn.dropout(conv1, _dropout) # Convolution Layer conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2']) # Max Pooling (down-sampling) conv2 = max_pool(conv2, k=2) # Apply Dropout conv2 = tf.nn.dropout(conv2, _dropout) # Fully connected layer # Reshape conv2 output to fit dense layer input dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Relu activation dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1'])) # Apply Dropout dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout # Output, class prediction out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out']) return out
# Store layers weight & bias weights = { # 5x5 conv, 1 input, 32 outputs 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), # 5x5 conv, 32 inputs, 64 outputs 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), # fully connected, 7*7*64 inputs, 1024 outputs 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), # 1024 inputs, 10 outputs (class prediction) 'out': tf.Variable(tf.random_normal([1024, n_classes])) } biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) }
# Construct model pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables init = tf.global_variables_initializer()
# Launch the graph with tf.Session() as sess: sess.run(init) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) step += 1 print "Optimization Finished!" # Calculate accuracy for 256 mnist test images print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
Iter 2560, Minibatch Loss= 26046.011719, Training Accuracy= 0.21094 Iter 5120, Minibatch Loss= 10456.769531, Training Accuracy= 0.52344 Iter 7680, Minibatch Loss= 6273.207520, Training Accuracy= 0.71875 Iter 10240, Minibatch Loss= 6276.231445, Training Accuracy= 0.64062 Iter 12800, Minibatch Loss= 4188.221680, Training Accuracy= 0.77344 Iter 15360, Minibatch Loss= 2717.077637, Training Accuracy= 0.80469 Iter 17920, Minibatch Loss= 4057.120361, Training Accuracy= 0.81250 Iter 20480, Minibatch Loss= 1696.550415, Training Accuracy= 0.87500 Iter 23040, Minibatch Loss= 2525.317627, Training Accuracy= 0.85938 Iter 25600, Minibatch Loss= 2341.906738, Training Accuracy= 0.87500 Iter 28160, Minibatch Loss= 4200.535156, Training Accuracy= 0.79688 Iter 30720, Minibatch Loss= 1888.964355, Training Accuracy= 0.89062 Iter 33280, Minibatch Loss= 2167.645996, Training Accuracy= 0.84375 Iter 35840, Minibatch Loss= 1932.107544, Training Accuracy= 0.89844 Iter 38400, Minibatch Loss= 1562.430054, Training Accuracy= 0.90625 Iter 40960, Minibatch Loss= 1676.755249, Training Accuracy= 0.84375 Iter 43520, Minibatch Loss= 1003.626099, Training Accuracy= 0.93750 Iter 46080, Minibatch Loss= 1176.615479, Training Accuracy= 0.86719 Iter 48640, Minibatch Loss= 1260.592651, Training Accuracy= 0.88281 Iter 51200, Minibatch Loss= 1399.667969, Training Accuracy= 0.86719 Iter 53760, Minibatch Loss= 1259.961426, Training Accuracy= 0.89844 Iter 56320, Minibatch Loss= 1415.800781, Training Accuracy= 0.89062 Iter 58880, Minibatch Loss= 1835.365967, Training Accuracy= 0.85156 Iter 61440, Minibatch Loss= 1395.168823, Training Accuracy= 0.90625 Iter 64000, Minibatch Loss= 973.283569, Training Accuracy= 0.88281 Iter 66560, Minibatch Loss= 818.093811, Training Accuracy= 0.92969 Iter 69120, Minibatch Loss= 1178.744263, Training Accuracy= 0.92188 Iter 71680, Minibatch Loss= 845.889709, Training Accuracy= 0.89844 Iter 74240, Minibatch Loss= 1259.505615, Training Accuracy= 0.90625 Iter 76800, Minibatch Loss= 738.037109, Training Accuracy= 0.89844 Iter 79360, Minibatch Loss= 862.499146, Training Accuracy= 0.93750 Iter 81920, Minibatch Loss= 739.704041, Training Accuracy= 0.90625 Iter 84480, Minibatch Loss= 652.880310, Training Accuracy= 0.95312 Iter 87040, Minibatch Loss= 635.464600, Training Accuracy= 0.92969 Iter 89600, Minibatch Loss= 933.166626, Training Accuracy= 0.90625 Iter 92160, Minibatch Loss= 213.874893, Training Accuracy= 0.96094 Iter 94720, Minibatch Loss= 609.575684, Training Accuracy= 0.91406 Iter 97280, Minibatch Loss= 560.208008, Training Accuracy= 0.93750 Iter 99840, Minibatch Loss= 963.577148, Training Accuracy= 0.90625 Optimization Finished! Testing Accuracy: 0.960938