Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel: Python 2

Multilayer Perceptron in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
import tensorflow as tf
# Parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 display_step = 1
# Network Parameters n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 256 # 2nd layer num features n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes])
# Create model def multilayer_perceptron(_X, _weights, _biases): #Hidden layer with RELU activation layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) #Hidden layer with RELU activation layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) return tf.matmul(layer_2, weights['out']) + biases['out']
# Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) }
# Construct model pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer # Softmax loss cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Adam Optimizer optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables init = tf.global_variables_initializer()
# Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
Epoch: 0001 cost= 160.113980416 Epoch: 0002 cost= 38.665780694 Epoch: 0003 cost= 24.118004577 Epoch: 0004 cost= 16.440921303 Epoch: 0005 cost= 11.689460141 Epoch: 0006 cost= 8.469423468 Epoch: 0007 cost= 6.223237230 Epoch: 0008 cost= 4.560174118 Epoch: 0009 cost= 3.250516910 Epoch: 0010 cost= 2.359658795 Epoch: 0011 cost= 1.694081847 Epoch: 0012 cost= 1.167997509 Epoch: 0013 cost= 0.872986831 Epoch: 0014 cost= 0.630616366 Epoch: 0015 cost= 0.487381571 Optimization Finished! Accuracy: 0.9462