Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel: Python 2

Recurrent Neural Network in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) import tensorflow as tf from tensorflow.models.rnn import rnn, rnn_cell import numpy as np
Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
''' To classify images using a reccurent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' # Parameters learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 10 # Network Parameters n_input = 28 # MNIST data input (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) istate = tf.placeholder("float", [None, 2*n_hidden]) #state & cell => 2x n_hidden y = tf.placeholder("float", [None, n_classes]) # Define weights weights = { 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights 'out': tf.Variable(tf.random_normal([n_hidden, n_classes])) } biases = { 'hidden': tf.Variable(tf.random_normal([n_hidden])), 'out': tf.Variable(tf.random_normal([n_classes])) }
def RNN(_X, _istate, _weights, _biases): # input shape: (batch_size, n_steps, n_input) _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size # Reshape to prepare input to hidden activation _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input) # Linear activation _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden'] # Define a lstm cell with tensorflow lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) # Split data because rnn cell needs a list of inputs for the RNN inner loop _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden) # Get lstm cell output outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate) # Linear activation # Get inner loop last output return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
pred = RNN(x, istate, weights, biases) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables init = tf.global_variables_initializer() # Launch the graph with tf.Session() as sess: sess.run(init) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_xs = batch_xs.reshape((batch_size, n_steps, n_input)) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2*n_hidden))}) if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2*n_hidden))}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2*n_hidden))}) print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \ ", Training Accuracy= " + "{:.5f}".format(acc) step += 1 print "Optimization Finished!" # Calculate accuracy for 256 mnist test images test_len = 256 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label, istate: np.zeros((test_len, 2*n_hidden))})
Iter 1280, Minibatch Loss= 1.888242, Training Accuracy= 0.39844 Iter 2560, Minibatch Loss= 1.519879, Training Accuracy= 0.47656 Iter 3840, Minibatch Loss= 1.238005, Training Accuracy= 0.63281 Iter 5120, Minibatch Loss= 0.933760, Training Accuracy= 0.71875 Iter 6400, Minibatch Loss= 0.832130, Training Accuracy= 0.73438 Iter 7680, Minibatch Loss= 0.979760, Training Accuracy= 0.70312 Iter 8960, Minibatch Loss= 0.821921, Training Accuracy= 0.71875 Iter 10240, Minibatch Loss= 0.710566, Training Accuracy= 0.79688 Iter 11520, Minibatch Loss= 0.578501, Training Accuracy= 0.82812 Iter 12800, Minibatch Loss= 0.765049, Training Accuracy= 0.75000 Iter 14080, Minibatch Loss= 0.582995, Training Accuracy= 0.78125 Iter 15360, Minibatch Loss= 0.575092, Training Accuracy= 0.79688 Iter 16640, Minibatch Loss= 0.701214, Training Accuracy= 0.75781 Iter 17920, Minibatch Loss= 0.561972, Training Accuracy= 0.78125 Iter 19200, Minibatch Loss= 0.394480, Training Accuracy= 0.85938 Iter 20480, Minibatch Loss= 0.356244, Training Accuracy= 0.91406 Iter 21760, Minibatch Loss= 0.632163, Training Accuracy= 0.78125 Iter 23040, Minibatch Loss= 0.269334, Training Accuracy= 0.90625 Iter 24320, Minibatch Loss= 0.485007, Training Accuracy= 0.86719 Iter 25600, Minibatch Loss= 0.569704, Training Accuracy= 0.78906 Iter 26880, Minibatch Loss= 0.267697, Training Accuracy= 0.92188 Iter 28160, Minibatch Loss= 0.381177, Training Accuracy= 0.90625 Iter 29440, Minibatch Loss= 0.350800, Training Accuracy= 0.87500 Iter 30720, Minibatch Loss= 0.356782, Training Accuracy= 0.90625 Iter 32000, Minibatch Loss= 0.322511, Training Accuracy= 0.89062 Iter 33280, Minibatch Loss= 0.309195, Training Accuracy= 0.90625 Iter 34560, Minibatch Loss= 0.535408, Training Accuracy= 0.83594 Iter 35840, Minibatch Loss= 0.281643, Training Accuracy= 0.92969 Iter 37120, Minibatch Loss= 0.290962, Training Accuracy= 0.89844 Iter 38400, Minibatch Loss= 0.204718, Training Accuracy= 0.93750 Iter 39680, Minibatch Loss= 0.205882, Training Accuracy= 0.92969 Iter 40960, Minibatch Loss= 0.481441, Training Accuracy= 0.84375 Iter 42240, Minibatch Loss= 0.348245, Training Accuracy= 0.89844 Iter 43520, Minibatch Loss= 0.274692, Training Accuracy= 0.90625 Iter 44800, Minibatch Loss= 0.171815, Training Accuracy= 0.94531 Iter 46080, Minibatch Loss= 0.171035, Training Accuracy= 0.93750 Iter 47360, Minibatch Loss= 0.235800, Training Accuracy= 0.89844 Iter 48640, Minibatch Loss= 0.235974, Training Accuracy= 0.93750 Iter 49920, Minibatch Loss= 0.207323, Training Accuracy= 0.92188 Iter 51200, Minibatch Loss= 0.212989, Training Accuracy= 0.91406 Iter 52480, Minibatch Loss= 0.151774, Training Accuracy= 0.95312 Iter 53760, Minibatch Loss= 0.090070, Training Accuracy= 0.96875 Iter 55040, Minibatch Loss= 0.264714, Training Accuracy= 0.92969 Iter 56320, Minibatch Loss= 0.235086, Training Accuracy= 0.92969 Iter 57600, Minibatch Loss= 0.160302, Training Accuracy= 0.95312 Iter 58880, Minibatch Loss= 0.106515, Training Accuracy= 0.96875 Iter 60160, Minibatch Loss= 0.236039, Training Accuracy= 0.94531 Iter 61440, Minibatch Loss= 0.279540, Training Accuracy= 0.90625 Iter 62720, Minibatch Loss= 0.173585, Training Accuracy= 0.93750 Iter 64000, Minibatch Loss= 0.191009, Training Accuracy= 0.92188 Iter 65280, Minibatch Loss= 0.210331, Training Accuracy= 0.89844 Iter 66560, Minibatch Loss= 0.223444, Training Accuracy= 0.94531 Iter 67840, Minibatch Loss= 0.278210, Training Accuracy= 0.91406 Iter 69120, Minibatch Loss= 0.174290, Training Accuracy= 0.95312 Iter 70400, Minibatch Loss= 0.188701, Training Accuracy= 0.94531 Iter 71680, Minibatch Loss= 0.210277, Training Accuracy= 0.94531 Iter 72960, Minibatch Loss= 0.249951, Training Accuracy= 0.95312 Iter 74240, Minibatch Loss= 0.209853, Training Accuracy= 0.92188 Iter 75520, Minibatch Loss= 0.049742, Training Accuracy= 0.99219 Iter 76800, Minibatch Loss= 0.250095, Training Accuracy= 0.92969 Iter 78080, Minibatch Loss= 0.133853, Training Accuracy= 0.95312 Iter 79360, Minibatch Loss= 0.110206, Training Accuracy= 0.97656 Iter 80640, Minibatch Loss= 0.141906, Training Accuracy= 0.93750 Iter 81920, Minibatch Loss= 0.126872, Training Accuracy= 0.94531 Iter 83200, Minibatch Loss= 0.138925, Training Accuracy= 0.95312 Iter 84480, Minibatch Loss= 0.128652, Training Accuracy= 0.96094 Iter 85760, Minibatch Loss= 0.099837, Training Accuracy= 0.96094 Iter 87040, Minibatch Loss= 0.119000, Training Accuracy= 0.95312 Iter 88320, Minibatch Loss= 0.179807, Training Accuracy= 0.95312 Iter 89600, Minibatch Loss= 0.141792, Training Accuracy= 0.96094 Iter 90880, Minibatch Loss= 0.142424, Training Accuracy= 0.96094 Iter 92160, Minibatch Loss= 0.159564, Training Accuracy= 0.96094 Iter 93440, Minibatch Loss= 0.111984, Training Accuracy= 0.95312 Iter 94720, Minibatch Loss= 0.238978, Training Accuracy= 0.92969 Iter 96000, Minibatch Loss= 0.068002, Training Accuracy= 0.97656 Iter 97280, Minibatch Loss= 0.191819, Training Accuracy= 0.94531 Iter 98560, Minibatch Loss= 0.081197, Training Accuracy= 0.99219 Iter 99840, Minibatch Loss= 0.206797, Training Accuracy= 0.95312 Optimization Finished! Testing Accuracy: 0.941406