Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132932 views
License: OTHER
Kernel: Python 3

Basic Multi GPU Computation in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

This tutorial requires your machine to have 2 GPUs

  • "/cpu:0": The CPU of your machine.

  • "/gpu:0": The first GPU of your machine

  • "/gpu:1": The second GPU of your machine

  • For this example, we are using 2 GTX-980

import numpy as np import tensorflow as tf import datetime
#Processing Units logs log_device_placement = True #num of multiplications to perform n = 10
# Example: compute A^n + B^n on 2 GPUs # Create random large matrix A = np.random.rand(1e4, 1e4).astype('float32') B = np.random.rand(1e4, 1e4).astype('float32') # Creates a graph to store results c1 = [] c2 = [] # Define matrix power def matpow(M, n): if n < 1: #Abstract cases where n < 1 return M else: return tf.matmul(M, matpow(M, n-1))
# Single GPU computing with tf.device('/gpu:0'): a = tf.constant(A) b = tf.constant(B) #compute A^n and B^n and store results in c1 c1.append(matpow(a, n)) c1.append(matpow(b, n)) with tf.device('/cpu:0'): sum = tf.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n t1_1 = datetime.datetime.now() with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess: # Runs the op. sess.run(sum) t2_1 = datetime.datetime.now()
# Multi GPU computing # GPU:0 computes A^n with tf.device('/gpu:0'): #compute A^n and store result in c2 a = tf.constant(A) c2.append(matpow(a, n)) #GPU:1 computes B^n with tf.device('/gpu:1'): #compute B^n and store result in c2 b = tf.constant(B) c2.append(matpow(b, n)) with tf.device('/cpu:0'): sum = tf.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n t1_2 = datetime.datetime.now() with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess: # Runs the op. sess.run(sum) t2_2 = datetime.datetime.now()
print "Single GPU computation time: " + str(t2_1-t1_1) print "Multi GPU computation time: " + str(t2_2-t1_2)
Single GPU computation time: 0:00:11.833497 Multi GPU computation time: 0:00:07.085913