Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132923 views
License: OTHER
Kernel: Python 2

NumPy

Credits: Forked from Parallel Machine Learning with scikit-learn and IPython by Olivier Grisel

  • NumPy Arrays, dtype, and shape

  • Common Array Operations

  • Reshape and Update In-Place

  • Combine Arrays

  • Create Sample Data

import numpy as np

NumPy Arrays, dtypes, and shapes

a = np.array([1, 2, 3]) print(a) print(a.shape) print(a.dtype)
[1 2 3] (3,) int64
b = np.array([[0, 2, 4], [1, 3, 5]]) print(b) print(b.shape) print(b.dtype)
[[0 2 4] [1 3 5]] (2, 3) int64
np.zeros(5)
array([ 0., 0., 0., 0., 0.])
np.ones(shape=(3, 4), dtype=np.int32)
array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=int32)

Common Array Operations

c = b * 0.5 print(c) print(c.shape) print(c.dtype)
[[ 0. 1. 2. ] [ 0.5 1.5 2.5]] (2, 3) float64
d = a + c print(d)
[[ 1. 3. 5. ] [ 1.5 3.5 5.5]]
d[0]
array([ 1., 3., 5.])
d[0, 0]
1.0
d[:, 0]
array([ 1. , 1.5])
d.sum()
19.5
d.mean()
3.25
d.sum(axis=0)
array([ 2.5, 6.5, 10.5])
d.mean(axis=1)
array([ 3. , 3.5])

Reshape and Update In-Place

e = np.arange(12) print(e)
[ 0 1 2 3 4 5 6 7 8 9 10 11]
# f is a view of contents of e f = e.reshape(3, 4) print(f)
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
# Set values of e from index 5 onwards to 0 e[5:] = 0 print(e)
[0 1 2 3 4 0 0 0 0 0 0 0]
# f is also updated f
array([[0, 1, 2, 3], [4, 0, 0, 0], [0, 0, 0, 0]])
# OWNDATA shows f does not own its data f.flags
C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : False WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False

Combine Arrays

a
array([1, 2, 3])
b
array([[0, 2, 4], [1, 3, 5]])
d
array([[ 1. , 3. , 5. ], [ 1.5, 3.5, 5.5]])
np.concatenate([a, a, a])
array([1, 2, 3, 1, 2, 3, 1, 2, 3])
# Use broadcasting when needed to do this automatically np.vstack([a, b, d])
array([[ 1. , 2. , 3. ], [ 0. , 2. , 4. ], [ 1. , 3. , 5. ], [ 1. , 3. , 5. ], [ 1.5, 3.5, 5.5]])
# In machine learning, useful to enrich or # add new/concatenate features with hstack np.hstack([b, d])
array([[ 0. , 2. , 4. , 1. , 3. , 5. ], [ 1. , 3. , 5. , 1.5, 3.5, 5.5]])

Create Sample Data

%matplotlib inline import pylab as plt import seaborn seaborn.set()
# Create evenly spaced numbers over the specified interval x = np.linspace(0, 2, 10) plt.plot(x, 'o-'); plt.show()
Image in a Jupyter notebook
# Create sample data, add some noise x = np.random.uniform(1, 100, 1000) y = np.log(x) + np.random.normal(0, .3, 1000) plt.scatter(x, y) plt.show()
Image in a Jupyter notebook