Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
1
\documentclass[a4paper,10pt]{article}
2
\usepackage{amssymb, amsmath}
3
\DeclareMathOperator{\arcsinh}{arcsinh}
4
\DeclareMathOperator{\arccosh}{arccosh}
5
\DeclareMathOperator{\arctanh}{arctanh}
6
\usepackage[utf8]{inputenc} % this is needed for umlauts
7
\usepackage[ngerman]{babel} % this is needed for umlauts
8
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
9
%layout
10
\usepackage[margin=2.5cm]{geometry}
11
\usepackage{parskip}
12
13
\pdfinfo{
14
/Author (Peter Merkert, Martin Thoma)
15
/Title (Wichtige Formeln der Analysis I)
16
/CreationDate (D:20120221095400)
17
/Subject (Analysis I)
18
/Keywords (Analysis I; Formeln)
19
}
20
21
%\everymath={\displaystyle}
22
23
\begin{document}
24
25
\title{Analysis Formelsammlung}
26
\author{Peter Merkert, Martin Thoma}
27
\date{21. Februar 2012}
28
29
\section{Grenzwerte}
30
\begin{table}[ht]
31
\begin{minipage}[b]{0.5\linewidth}\centering
32
33
\begin{align*}
34
\lim_{x \to 0} \frac {\sin x}{x} &= 1 \\
35
\lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\
36
\lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\
37
\sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\
38
\cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\
39
\sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}
40
\end{align*}
41
42
\end{minipage}
43
\hspace{0.5cm}
44
\begin{minipage}[b]{0.5\linewidth}
45
\centering
46
47
\begin{align*}
48
\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
49
\sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
50
e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\
51
\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\
52
\sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
53
0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
54
\end{align*}
55
56
\end{minipage}
57
\end{table}
58
59
\section{Zusammenhänge}
60
\begin{align*}
61
(\cos x)^2 + (\sin x)^2 &= 1 \\
62
(\cosh x)^2 - (\sinh x)^2 &= 1 \\
63
\tan x &= \frac {\sin x}{\cos x} \\
64
\tanh x &= \frac {\sinh x}{\cosh x} \\
65
(x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
66
\end{align*}
67
68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69
\section{Ableitungen}
70
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71
\begin{table}[ht]
72
\begin{minipage}[b]{0.3\linewidth}\centering
73
\begin{align*}
74
(\sin x)' &= \cos x \\
75
(\cos x)' &= -\sin x \\
76
(\tan x)' &= \frac{1}{\cos^2 x} \\
77
(\sinh x)' &= \cosh x \\
78
(\cosh x)' &= \sinh x \\
79
\end{align*}
80
81
\end{minipage}
82
\hspace{0.1cm}
83
\begin{minipage}[b]{0.3\linewidth}
84
\centering
85
86
\begin{align*}
87
(\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\
88
(\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\
89
(\arctan x)' &= \frac {1}{1 + x^2} \\
90
% (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\
91
% (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\
92
% (\arctanh x)' &= \frac {1}{1 - x^2}
93
\end{align*}
94
\end{minipage}
95
\hspace{0.1cm}
96
\begin{minipage}[b]{0.3\linewidth}
97
\centering
98
\begin{align*}
99
(\log x)' &= \frac{1}{x} \\
100
\end{align*}
101
\end{minipage}
102
\end{table}
103
104
\section{Werte}
105
\begin{table}[h]
106
\centering
107
\begin{tabular}{llll}
108
\(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\
109
\(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\
110
\end{tabular}
111
\end{table}
112
113
\end{document}
114
115