📚 The CoCalc Library - books, templates and other resources
cocalc-examples / martinthoma-latex-examples / cheat-sheets / analysis / Analysis_Wichtige_Formeln.tex
132928 viewsLicense: OTHER
\documentclass[a4paper,10pt]{article}1\usepackage{amssymb, amsmath}2\DeclareMathOperator{\arcsinh}{arcsinh}3\DeclareMathOperator{\arccosh}{arccosh}4\DeclareMathOperator{\arctanh}{arctanh}5\usepackage[utf8]{inputenc} % this is needed for umlauts6\usepackage[ngerman]{babel} % this is needed for umlauts7\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf8%layout9\usepackage[margin=2.5cm]{geometry}10\usepackage{parskip}1112\pdfinfo{13/Author (Peter Merkert, Martin Thoma)14/Title (Wichtige Formeln der Analysis I)15/CreationDate (D:20120221095400)16/Subject (Analysis I)17/Keywords (Analysis I; Formeln)18}1920%\everymath={\displaystyle}2122\begin{document}2324\title{Analysis Formelsammlung}25\author{Peter Merkert, Martin Thoma}26\date{21. Februar 2012}2728\section{Grenzwerte}29\begin{table}[ht]30\begin{minipage}[b]{0.5\linewidth}\centering3132\begin{align*}33\lim_{x \to 0} \frac {\sin x}{x} &= 1 \\34\lim_{x \to 0} \frac {e^x - 1}{x} &= 1 \\35\lim_{h \to 0} \frac {e^{{x_0} + h} - e^{x_0}}{h} &= e^{x_0} \\36\sum_{n = 0}^{\infty} (-1)^n \frac {(-1)^{n + 1}}{n} &= \log 2 \\37\cos x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n}}{(2n)!} \\38\sin x &= \sum_{n = 0}^{\infty} (-1)^n \frac {x^{2n + 1}}{(2n + 1)!}39\end{align*}4041\end{minipage}42\hspace{0.5cm}43\begin{minipage}[b]{0.5\linewidth}44\centering4546\begin{align*}47\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\48\sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\49e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\50\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\51\sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\520,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}53\end{align*}5455\end{minipage}56\end{table}5758\section{Zusammenhänge}59\begin{align*}60(\cos x)^2 + (\sin x)^2 &= 1 \\61(\cosh x)^2 - (\sinh x)^2 &= 1 \\62\tan x &= \frac {\sin x}{\cos x} \\63\tanh x &= \frac {\sinh x}{\cosh x} \\64(x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k65\end{align*}6667%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%68\section{Ableitungen}69%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%70\begin{table}[ht]71\begin{minipage}[b]{0.3\linewidth}\centering72\begin{align*}73(\sin x)' &= \cos x \\74(\cos x)' &= -\sin x \\75(\tan x)' &= \frac{1}{\cos^2 x} \\76(\sinh x)' &= \cosh x \\77(\cosh x)' &= \sinh x \\78\end{align*}7980\end{minipage}81\hspace{0.1cm}82\begin{minipage}[b]{0.3\linewidth}83\centering8485\begin{align*}86(\arcsin x)' &= \frac {1}{\sqrt{1-x^2}} \\87(\arccos x)' &= - \frac {1}{\sqrt{1-x^2}} \\88(\arctan x)' &= \frac {1}{1 + x^2} \\89% (\arcsinh x)' &= \frac {1}{\sqrt{1+x^2}} \\90% (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\91% (\arctanh x)' &= \frac {1}{1 - x^2}92\end{align*}93\end{minipage}94\hspace{0.1cm}95\begin{minipage}[b]{0.3\linewidth}96\centering97\begin{align*}98(\log x)' &= \frac{1}{x} \\99\end{align*}100\end{minipage}101\end{table}102103\section{Werte}104\begin{table}[h]105\centering106\begin{tabular}{llll}107\(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\108\(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\109\end{tabular}110\end{table}111112\end{document}113114115