Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
1
%!TEX root = Programmierparadigmen.tex
2
\markboth{Symbolverzeichnis}{Symbolverzeichnis}
3
\chapter*{Symbolverzeichnis}
4
\addcontentsline{toc}{chapter}{Symbolverzeichnis}
5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
% Reguläre Ausdrücke %
7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
\section*{Reguläre Ausdrücke}
9
10
% Set \mylengtha to widest element in first column; adjust
11
% \mylengthb so that the width of the table is \columnwidth
12
\settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$}
13
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
14
15
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
16
$\emptyset$ & Leere Menge\\
17
$\epsilon$ & Das leere Wort\\
18
$\alpha, \beta$ & Reguläre Ausdrücke\\
19
$L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\
20
$L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\
21
$L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\
22
$L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\
23
$\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\
24
$\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\
25
\end{xtabular}
26
27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28
% Logik %
29
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30
\section*{Logik}
31
32
\settowidth\mylengtha{$\mathcal{M} \models \varphi$}
33
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
34
35
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
36
$\mathcal{M} \models \varphi$& Semantische Herleitbarkeit\newline Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\
37
$\psi \vdash \varphi$ & Syntaktische Herleitbarkeit\newline Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\
38
\end{xtabular}
39
40
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41
% Typinferenz %
42
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43
\section*{Typinferenz}
44
45
\settowidth\mylengtha{$\tau \succeq \tau'$}
46
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
47
48
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
49
$\Gamma \vdash t: \tau$ & Im Typkontext $\Gamma$ hat der Term $t$ den Typ $\tau$\\
50
$a \Parr b$ & $a$ wird zu $b$ unifiziert\\
51
$\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
52
\end{xtabular}
53
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54
% Weiteres %
55
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56
\section*{Weiteres}
57
58
\settowidth\mylengtha{$\tau \succeq \tau'$}
59
\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
60
61
\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
62
$\bot$ & Bottom\\
63
$a \Parr b$ & $a$ wird zu $b$ unifiziert\\
64
$\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\
65
\end{xtabular}
66