📚 The CoCalc Library - books, templates and other resources
cocalc-examples / martinthoma-latex-examples / documents / Programmierparadigmen / Symbolverzeichnis.tex
132928 viewsLicense: OTHER
%!TEX root = Programmierparadigmen.tex1\markboth{Symbolverzeichnis}{Symbolverzeichnis}2\chapter*{Symbolverzeichnis}3\addcontentsline{toc}{chapter}{Symbolverzeichnis}4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5% Reguläre Ausdrücke %6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7\section*{Reguläre Ausdrücke}89% Set \mylengtha to widest element in first column; adjust10% \mylengthb so that the width of the table is \columnwidth11\settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$}12\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}1314\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}15$\emptyset$ & Leere Menge\\16$\epsilon$ & Das leere Wort\\17$\alpha, \beta$ & Reguläre Ausdrücke\\18$L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\19$L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\20$L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\21$L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\22$\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\23$\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\24\end{xtabular}2526%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%27% Logik %28%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%29\section*{Logik}3031\settowidth\mylengtha{$\mathcal{M} \models \varphi$}32\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}3334\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}35$\mathcal{M} \models \varphi$& Semantische Herleitbarkeit\newline Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\36$\psi \vdash \varphi$ & Syntaktische Herleitbarkeit\newline Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\37\end{xtabular}3839%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%40% Typinferenz %41%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%42\section*{Typinferenz}4344\settowidth\mylengtha{$\tau \succeq \tau'$}45\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}4647\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}48$\Gamma \vdash t: \tau$ & Im Typkontext $\Gamma$ hat der Term $t$ den Typ $\tau$\\49$a \Parr b$ & $a$ wird zu $b$ unifiziert\\50$\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\51\end{xtabular}52%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%53% Weiteres %54%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55\section*{Weiteres}5657\settowidth\mylengtha{$\tau \succeq \tau'$}58\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}5960\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}61$\bot$ & Bottom\\62$a \Parr b$ & $a$ wird zu $b$ unifiziert\\63$\tau \succeq \tau'$& $\tau$ wird durch $\tau'$ instanziiert\\\64\end{xtabular}6566