Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
1
import data
2
3
from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
4
from keras.models import Sequential, load_model
5
6
model = Sequential()
7
model.add(Conv2D(16, (3, 3)))
8
model.add(MaxPooling2D(pool_size=(2, 2)))
9
model.add(Conv2D(16, (3, 3)))
10
model.add(Flatten())
11
model.add(Dense(128, activation='relu'))
12
model.add(Dense(data.n_classes, activation='softmax'))
13
14
model.compile(loss='categorical_crossentropy', optimizer='adam')
15
model.fit(data.x_train, data.y_train)
16
17
model.save('model.h5')
18
model = load_model('model.h5')
19
y_predicted = model.predict(data.x_test)
20
21