📚 The CoCalc Library - books, templates and other resources
License: OTHER
\subsection{Zusammenhang von Graphen: Was ist das?}1\begin{frame}{Zusammenhang von Graphen}{Connectivity}2\begin{block}{Streng zusammenhängender Graph}3Ein streng zusammenhängender Graph ist ein gerichteter Graph,4in dem jeder Knoten von jedem erreichbar ist.5\end{block}6\begin{figure}7\begin{tikzpicture}[->,scale=1.8, auto,swap]8% Draw a 7,11 network9% First we draw the vertices10\foreach \pos/\name in {{(0,0)/a}, {(0,2)/b}, {(1,2)/c},11{(1,0)/d}, {(2,1)/e}, {(3,1)/f},12{(3,2)/g}, {(2,0)/h}}13\node[vertex] (\name) at \pos {$\name$};14% Connect vertices with edges and draw weights15\foreach \source/ \dest /\pos in {a/b/,b/c/,c/d/,d/a/,16c/e/bend left, d/e/,e/c/, f/g/,17g/f/bend left, d/h/}18\path (\source) edge [\pos] node {} (\dest);19\end{tikzpicture}20\end{figure}21\end{frame}2223\begin{frame}{Zusammenhang von Graphen}{Connectivity}24\begin{block}{Zusammenhangskomponente}25Eine Zusammenhangskomponente ist ein maximaler Subgraph S26eines gerichteten Graphen, wobei S streng zusammenhängend ist.27% Muss dieser Subgraph maximal sein?28\end{block}29\begin{figure}30\begin{tikzpicture}[->,scale=1.8, auto,swap]31% Draw a 7,11 network32% First we draw the vertices33\foreach \pos/\name in {{(0,0)/a}, {(0,2)/b}, {(1,2)/c},34{(1,0)/d}, {(2,1)/e}, {(3,1)/f},35{(3,2)/g}, {(2,0)/h}}36\node[vertex] (\name) at \pos {$\name$};37% Connect vertices with edges38\foreach \source/ \dest /\pos in {a/b/,b/c/,c/d/,d/a/,39c/e/bend left, d/e/,e/c/, f/g/,40g/f/bend left, d/h/}41\path (\source) edge [\pos] node {} (\dest);4243% colorize the vertices44\foreach \vertex in {a,b,c,d,e}45\path node[selected vertex] at (\vertex) {$\vertex$};4647\foreach \vertex in {f,g}48\path node[blue vertex] at (\vertex) {$\vertex$};4950\foreach \vertex in {h}51\path node[yellow vertex] at (\vertex) {$\vertex$};52\end{tikzpicture}53\end{figure}54\end{frame}5556\begin{frame}{Elementare Eigenschaften}57\begin{block}{}58Die Knotenmengen verschiedener SCCs sind disjunkt.59\end{block}6061\begin{block}{}62SCCs bilden Zyklen.63\end{block}6465\begin{block}{}66Die Vereinigung aller Knoten aller SCCs ergibt alle Knoten67des ursprünglichen Graphen.68\end{block}69\end{frame}707172