Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

๐Ÿ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
1
\subsection{Zweifachverbundener Graph}
2
\begin{frame}{Zweifachverbundener Graph}{Biconnected graph}
3
\begin{block}{Zweifachverbundener Graph}
4
Ein Graph $G=(E,V)$ ist genau dann zweifach verbunden (engl. biconnected), wenn er keine Artikulationspunkte enthรคlt.
5
\end{block}
6
Problem: Ist gegebener Graph zweifach verbunden? \\
7
$\Rightarrow$ Suche nach Artikulationspunken!
8
\end{frame}
9
10
\begin{frame}{Beispiel}
11
\begin{figure}
12
\begin{tikzpicture}[scale=1.8, auto,swap]
13
% Draw a 7,11 network
14
% First we draw the vertices
15
\foreach \pos/\name in {{(0,0)/a}, {(0,2)/b}, {(1,2)/c},
16
{(1,0)/d}, {(2,1)/e}, {(3,1)/f},
17
{(4,2)/g}, {(5,2)/h}, {(4,0)/i},
18
{(5,0)/j}}
19
\node[vertex] (\name) at \pos {$\name$};
20
% Connect vertices with edges
21
\foreach \source/ \dest /\pos in {a/b/,b/c/,c/d/,d/a/,
22
d/e/,e/c/,
23
e/f/,
24
f/g/, f/i/,g/c/,
25
g/h/, h/j/, j/i/, i/g/}
26
\path (\source) edge [\pos] node {} (\dest);
27
\end{tikzpicture}
28
\end{figure}
29
\end{frame}
30
31