Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
1
\documentclass{article}
2
\usepackage[pdftex,active,tightpage]{preview}
3
\setlength\PreviewBorder{2mm}
4
5
\usepackage[utf8]{inputenc} % this is needed for umlauts
6
\usepackage[ngerman]{babel} % this is needed for umlauts
7
\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
8
\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
9
\usepackage{braket} % needed for \Set
10
\usepackage{algorithm,algpseudocode}
11
12
\begin{document}
13
\begin{preview}
14
Sei $n \in \mathbb{N}_{\geq 1}$, $A \in \mathbb{R}^{n \times n}$ und
15
positiv definit sowie symmetrisch.
16
17
Dann existiert eine Zerlegung $A = L \cdot L^T$, wobei $L$ eine
18
untere Dreiecksmatrix ist. Diese wird von folgendem Algorithmus
19
berechnet:
20
21
\begin{algorithm}[H]
22
\begin{algorithmic}
23
\Function{Cholesky}{$A \in \mathbb{R}^{n \times n}$}
24
\State $L = \Set{0} \in \mathbb{R}^{n \times n}$ \Comment{Initialisiere $L$}
25
\For{($k=1$; $\;k \leq n$; $\;k$++)}
26
\State $L_{k,k} = \sqrt{A_{k,k} - \sum_{i=1}^{k-1} L_{k,i}^2}$
27
\For{($i=k+1$; $\;i \leq n$; $\;i$++)}
28
\State $L_{i,k} = \frac{A_{i,k} - \sum_{j=1}^{k-1} L_{i,j} \cdot L_{k,j}}{L_{k,k}}$
29
\EndFor
30
\EndFor
31
\State \Return $L$
32
\EndFunction
33
\end{algorithmic}
34
\caption{Cholesky-Zerlegung}
35
\label{alg:seq1}
36
\end{algorithm}
37
\end{preview}
38
\end{document}
39
40