Sage Reference Manual
Search.setIndex({envversion:42,terms:{ternary_cub:26,gk82:20,quadratic1:26,quadratic2:26,test_comparison:15,whose:17,is_integraldomain:1,typeerror:[15,0,17,31,20,21],under:[26,25,21],some_el:4,everi:[31,17],sage_object:26,appar:25,four:26,z11:20,vector:4,initialis:[4,17],is_id:31,cunningham_t:19,naiv:[31,17],ngen:[15,0,20,31,25],direct:21,consequ:17,second:[26,19,16,17],is_rh:10,"_test_elements_eq_transit":17,absprec:14,even:[26,25,31,17],euclidean:[],neg:[15,9,31,14,23],infinityring_class:15,"new":[26,25,28,23],symmetr:26,rlf:15,ternarycub:26,is_integraldomainel:12,here:[4,0,13,17,25],q12:26,interpret:[26,20,31],ringhomomorphism_cov:21,precis:[15,17,31,20,21,14],ternaryquadrat:26,fraction_field:[15,0,28,17,20,13],aurifeuilleanfactor:19,isomorph:[26,4],linearli:26,residue_field:31,total:31,unit:[25,28,29,17],natural_map:[21,10],describ:[23,18],morphism_from_cov:21,zpca:17,has_coerce_map_from:10,call:[15,0,28,16,29,31,17,19,20,21,23,33,26,25,13],until:[28,10],type:[],tell:[0,17,25],fractionfieldelement_1poly_field:[0,13],relat:[26,16],is_subr:17,thinkpad:26,must:[15,0,31,17,18,19,21,23,26,13],join:17,quartic:26,work:[15,16,17,10,23],root:[15,28,13,31,17],could:[4,20,31],give:[21,31],fibonacci:20,want:[26,17],david:[0,9,13,17,23],unsign:15,end:[25,21],ordinari:20,hom:[21,31,10],how:[26,31],answer:[15,17],symposium:13,wolfram:19,recogn:31,after:28,befor:[20,17],wrong:[26,20],adic:[],demonstr:15,gcd_int:16,attempt:[15,20],random_poli:26,salmon2:26,pushforward:21,green:20,mpr:21,first:[16,17,19,20,21,26],order:[15,0,29,31,17,21,4,26,25],origin:[26,25,16,17],pari_isprim:16,composit:[28,21],is_squar:[28,13],over:[],becaus:[13,17],s_prime:26,flexibl:17,fit:19,fix:[15,17,31,21,25,13],better:4,arith_int:16,them:[26,13],powerid:25,thei:[17,31,20,21,26,25],safe:21,rational_recon_int:16,"_test_zero":[25,17],choic:[25,21],unpickl:13,luca:20,each:[28,29,17,19,20,21],debug:19,side:[],mean:[26,15,14],quadratic_form:26,stuev:16,lexicograph:[25,28],content:17,rewrit:13,daniel:20,linear:[26,20,9,29],situat:4,infin:[],free:[19,25,17,18],standard:[31,17],ntl:23,brioschi:26,zeta7:21,zeta6:17,traceback:[15,0,28,29,31,17,19,20,21,23,26,25,33],zeta3:17,unabl:[25,20,33,31,17],unknown:17,factor_cunningham:19,sageobject:26,rang:[25,28,16],grade:17,restrict:10,alreadi:[15,17],principalidealdomain:[24,17],massiv:16,primari:31,dedekind:[],top:25,sometim:[0,17],toi:25,too:[20,16],similarli:21,john:17,from_recurr:20,inexact:[0,13],somewhat:4,ideal_princip:31,"_ideal_class_":17,ebar:29,is_fractionfieldel:13,provid:[26,25,31,17],euclideandomain:[17,2],seem:17,scaled_coeff:26,minu:15,burcin:0,latter:31,fractionfieldel:[0,13],quadric:26,though:[25,31,17],object:[15,0,28,16,31,17,19,20,21,26,25,13],monomi:[],is_ident:21,idealmonoid:5,monoidel:31,alarm:19,doe:[15,31,17,18,21,26,25],sum:[26,25,17],quadraticfield:[5,17],random:[4,0,17],sage:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,31,32,33,34,35,36,37],speedup:16,syntax:26,infinityr:15,involv:[25,31],absolut:[21,31,17],ogf:20,sugar:26,"__call__":17,is_commut:[15,25,17],lst2:9,lst1:9,stop:16,multiplicative_ord:17,reconstruct:16,"_test_nonzero_equ":[25,17],bar:25,emb:31,"_test_elements_eq_symmetr":17,fp_fpt_coerc:28,unsignedinfin:15,result:[15,17,20,21,23,4,25],s_invari:26,ybar:[25,21,29],polar_con:26,said:31,wikipedia:26,figur:31,attribut:[31,17],never:17,extend:[28,17],xrang:23,maximal_ord:[0,17],extens:[28,31,17],lazi:15,irregular:23,howev:[4,31,17],against:[17,23],jstor:19,apply_morph:31,uni:18,com:19,kwd:[0,28,31,17,4,26,25],"2nd":20,assum:[26,15,20,13,31],three:[26,25],been:21,ringhomset_gener:10,much:[26,4,9,16],interest:[25,21],basic:[],commutative_r:35,macaulay2:31,is_trivi:31,argument:[0,16,31,17,4,26,13],lift:[25,28,21,29,31],els:19,zz_fpt_coerc:28,ident:[26,21,31,23],freealgebra:[25,17],continuedfraction_period:4,homset:[21,10],a20:26,a21:26,a22:26,have:[17,31,21,26,25,13],carlson:21,long_max:19,zmod:[9,21],sever:17,class_group:17,"_test_not_implemented_method":[17,18],fpt_polyring_sect:28,make:[15,16,17,21,26,25],atiyah:31,complex:[31,9,21,17,23],complet:[26,20,17],wheel:16,xbar:[25,21,29],fairli:25,rais:[15,28,17,21,23,25,33],make_element_old:13,inherit:[4,0,17,25],greatest:[31,17],thi:[5,0,28,16,29,31,17,18,19,20,21,15,23,4,10,26,25,13,14],ringmap:21,"137th":20,left:[20,31,17,18],just:[26,25,28,31],yet:[25,21],conjug:[21,31],macdonald:31,fpt_iter:28,is_dedekinddomainel:36,minusinfin:15,expon:19,get_debug_level:19,absolute_norm:31,elt:13,noether:25,mayb:17,subquoti:17,elabor:18,lcm:[15,17],ho72:13,specif:[31,17],negat:15,unstabl:13,sebastian:13,underli:[0,21,17],www:19,right:[20,31,14,18],old:[13,23],deal:26,is_commutativealgebra:11,interv:[15,17],maxim:[0,31,17,25],donald:20,principal_ideal_domain_el:37,indirect:[19,21,17,10],idealmonoid_nc:18,continued_fract:4,establish:17,is_euclideandomain:2,subclass:[26,25,13,17],multipli:[26,15],ideal_1poly_field:31,condit:21,quo_rem:13,plu:15,quaternion:17,"_test_additive_associ":17,unfortun:17,steenrodalgebra:[17,18],is_principalidealdomain:24,"float":15,bound:[28,16,17],frobenius_endomorph:[21,17],jena:18,holonom:20,factor_trial_divis:19,wai:[15,25,21],theta_invari:26,transform:26,why:[26,5],fraction_field_el:[0,13],reli:31,fraction:[],stopiter:28,analysi:20,homogen:[26,25,20,31],form:[26,25],offer:17,polar_eqn:26,epsilon:17,inhom:26,continuedfractionfield:4,zeta_ord:17,"true":[0,1,2,4,5,7,8,9,10,11,25,13,15,17,18,19,20,21,22,23,24,12,26,28,29,31,32,34,35,36,37],reset:19,coeff:26,ringhomomorph:21,intern:29,cfinite_sequ:20,dedekinddomain:[34,17],homsetwithbas:10,is_infinit:15,classic:[],"abstract":[],cyclotom:[19,21],lifting_map:25,proven:19,py_int:16,exist:17,cover_r:25,check:[15,7,36,1,17,2,32,19,34,21,22,23,24,35,10,25,11,12,37],rationalfield:[0,13],when:[25,16,31,21,17],ternary_biquadrat:26,test:[5,0,28,16,29,31,17,18,19,20,21,15,23,9,10,26,25,13],fraction_field_fpt:28,a11:26,a10:26,a12:26,ringhomomorphism_from_bas:21,consid:[15,28,21,17],uniformli:17,faster:[16,23],anywher:17,ramifi:31,ignor:0,time:[26,15],inv_inhomogen:26,backward:25,chain:17,skip:[25,18],global:19,lll:20,row:15,decid:[26,15],depend:[26,16,31],random_matrix:4,syzygi:26,certainli:25,multilinear:26,isinst:20,string:[25,20,16,17,18],"_test_zero_divisor":17,word:25,exact:[0,13,17,23],is_r:17,cunningham:19,make_el:13,level:[26,19],iter:[26,28,16],quotientring_generic_with_categori:29,upper:16,slower:[4,16],sign:[15,19],krull:[31,17],is_fractionfield:0,appear:3,current:[25,21,31,17,10],homomorph:[],is_quotientr:25,sz94:20,commutative_ring_el:22,deriv:[26,13,17],coerce_map_from:28,coeffici:[26,20,21,28,17],satisfi:[15,20],signerror:15,shift:20,trial:19,behav:14,semant:4,modul:[26,6,8,17],instal:19,prove:19,prec:[31,17],live:26,ringmap_lift:21,andr:19,finit:[],citro:16,fast_arith:16,cap:[31,21,17,14],uniqu:[31,17],groebner_basi:31,can:[15,16,31,17,19,20,21,4,26,25,14],purpos:17,occur:29,alwai:[26,20,28,31],multipl:[15,28,17,26,25,13],is_commutativ:35,write:14,fpt:28,fourth:13,algebraicform:26,binary_quadrat:26,map:[28,17,31,21,10,25],product:25,mai:[17,31,20,26,25,13],data:[20,23],johnson:4,inform:31,combin:26,callabl:17,unit_id:17,milnor:[17,18],a02:26,a03:26,a00:26,a01:26,equip:25,still:[15,31,17],group:[26,17],jim:21,ramanujan:20,non:[],recal:31,lessthaninfin:15,initi:[15,31,19,20,21,23,9],verifi:21,now:21,introduct:31,laurent_series_ring_el:20,term:[25,20,29],name:[0,28,29,31,17,20,26,25],revers:25,"_test_elements_eq_reflex":17,attributeerror:[31,17],domain:[],replac:26,continu:[],wpbinaryform:26,coprim:17,happen:15,shown:25,space:[],algebra:[],ringhomset:10,laurentseri:20,factori:26,t_prime:26,million:23,theori:[],org:[26,19,8],element_class:[0,29],place:15,think:[26,17],lambda:26,oper:[15,13],ideal_fract:31,kernel:[20,21],onc:[25,17],bradshaw:16,predefin:15,size:[0,28,17,31,21,25],given:[31,20,21,3,26,25],convent:26,euclideandomainel:7,numberfield:[15,21,31,17],circl:26,conveni:[26,31],copi:21,specifi:[26,25,31,17],mathworld:19,than:[15,28,16,31,19,3],serv:25,ternary_quadrat:26,aninfin:15,were:[26,25],posit:[15,19,21,17],seri:[],lowest:17,is_on:13,composite_field:33,craig:16,ani:[15,31,17,20,21,26,25],notimplementederror:[29,17,31,20,21,25],letterplace_id:18,kevin:16,squar:[15,19,28,13],note:[15,17,31,21,26,25],denomin:[0,20,13,28],horowitz:13,take:[26,15,31,17],functori:25,lift_map:31,sure:[15,17],normal:[26,25,20],track:31,sagemath:8,is_fieldel:32,beta:21,pair:19,"_test_associ":17,latex:23,synonym:17,quaternionalgebra:17,n_form:26,show:31,codomain:[21,10],quotient_ring_el:29,onli:[15,0,29,31,17,19,20,21,4,26,25],explicitli:[26,31,17,14],transact:20,ideal_nc:[25,17,18],activ:31,term_ord:25,analyt:26,variou:[],get:[15,28,20,17,14],quaternary_biquadrat:26,cannot:[26,15,31,17],progress:[28,17],gen:[15,0,28,29,31,17,18,20,21,25,13],requir:[19,17,25],prime:[],where:[15,31,17,19,21,3,4,9,10,26,13],wiki:26,loeffler:17,"_check_covari":26,spars:26,is_primefield:8,parentwithgen:[25,17],infinit:[15,25,20],monoid:[],enumer:17,label:25,enough:[20,31],between:[],harvei:[9,17,23],assumpt:25,parent:[5,0,28,29,31,20,21,15,4,13,14],manual:[13,17],nile:4,theta_prime_invari:26,mani:[15,0,13,31],rescal:26,period:4,"5466v1":19,poli:17,ultim:4,bernmm_bern_rat:9,invert:28,invers:[26,28,21],wpinvarianttheori:26,addit:[13,31,17],valueerror:[15,28,31,17,19,20,21,23,26,33],"_test_on":17,isprim:16,former:31,those:17,"case":[0,28,16,31,17,18,21,23,4,25,13],quotientringel:[25,29],cast:14,bernoulli_mod_p:23,henc:17,is_integrally_clos:17,ambient:[25,31],"__init__":25,"_test_prod":17,etc:[],same:[15,0,31,17,18,3,23,26],binari:26,html:19,knuth:20,document:[26,31,17],as_quadraticform:26,laurentpolynomialr:20,defn:[25,28,21,10],appropri:20,without:16,model:25,dimension:25,factor_aurifeuillian:19,polygen:17,t_covari:26,aspect:17,touch:23,"_test_quo_rem":17,speed:19,versu:15,infinityel:15,except:[15,4,17],is_principalidealdomainel:37,real:[15,21,17],psi:[21,31],around:14,h_covari:26,"_test_characterist":17,mod:[16,31,17,18,19,23,25],integ:[],either:[28,17,4,26,25,13],output:[15,28,29,31,17,19,20,21,8,23,33,26,25,13],ascend:17,nonzero:[21,31,17],binary_quart:26,is_maxim:[25,31,17],easili:25,faction:20,definit:[26,15,25],inject:[21,17],base_r:[0,20,31,17],refer:[17,31,19,20,26,13],power:[],ration:[],found:[19,20,13],zimmermann:20,"throw":17,comparison:15,joyner:[0,13],acm:[20,13],chop:20,degre:[0,17,20,21,3,26,25],act:[26,21],effici:19,elementari:15,quotient_r:[25,31,17],"import":[15,0,28,31,17,19,20,8,23,9,10,26,25,13],quotientring_nc:25,log:20,g_covari:26,start:[20,16,28,17],interfac:[17,23],lot:15,strictli:3,tupl:[26,29,17],is_inject:21,is_dedekinddomain:34,inject_vari:26,invariant_theori:26,t_prime_covari:26,notat:[26,31],algorithm:[16,31,17,19,20,23,9,13],possibl:[15,17,21,4,25,33],"default":[28,16,29,31,17,19,20,21,10,26,25,13],embed:[21,31,17],bernmm:[],creat:[15,0,31,17,20,21,4,25,14],certain:17,"_test_gcd_vs_xgcd":17,dedekind_domain_el:36,file:23,again:25,"220446049250313e":17,qqbar:[33,17],"_test_euclidean_degre":17,valid:21,denom:28,formsbas:26,is_unit:29,polar:26,integraldomain:[1,17],sequenc:[],symbol:[15,20,17],is_prime_field:17,multidimension:20,polynomi:[5,0,28,29,31,17,19,20,21,4,33,10,26,25,13,14],euclidean_domain_el:7,reduc:[28,29,31,20,25,13],assert:[15,19],homog:31,fractionfield_gener:0,potenti:26,represent:[26,15,20,29],all:[15,28,16,29,31,17,18,19,21,3,4,26,25],illustr:[29,31,17],principal_ideal_domain:24,scalar:28,deprecationwarn:8,follow:[5,15,28,17,19,21,26,25],rewrot:[16,23],inverse_mod_int:16,wetherel:[0,13],norm:31,mpf:21,krull_dimens:17,far:29,less_than_infin:15,util:[],is_homogen:26,failur:5,veri:[15,14,10],ticket:[15,31,17,18,19,21,4,25,13],strang:17,list:[28,16,29,31,17,19,20,21,3,23,26,25,13],arithmeticerror:[15,17,23],small:21,dimens:[26,31,17],correct:17,b22:26,zero:[15,29,31,17,20,21,26,25,13],pass:[0,31,17,18,23,4,26,14],further:17,what:[15,17],sub:[26,15,28,18],richard:19,section:[26,25,28],overload:17,version:[16,17,19,20,21,23,9],is_irreduc:31,minusinfinityel:15,test_signed_infin:15,method:[31,17,19,20,21,26,25],full:[25,21,18],themselv:31,variat:21,modular:26,ansatz:20,modifi:[21,17],valu:[15,20,21,28,17],search:6,divisor:[31,17],doctest:[19,21,17,8,10],pick:17,action:26,quotient:[],via:[26,20],shorthand:[15,31],deprec:[4,8,17],coercion:[25,28,21,10],convert_map_from:28,select:17,proceed:13,distinct:17,is_integr:13,two:[],binaryrecurrencesequ:20,taken:0,more:[15,31,17,18,9,10,25],fptelement:28,canon:[15,33,17],an_el:[4,20,17],particular:17,known:[26,15,17],cach:17,quotientfunctor:25,none:[0,28,16,31,17,19,20,21,4,10,26,25,13],det:26,remain:[26,28],"_test_cardin":17,def:[26,25],inv4:26,accept:[20,21],sphere:26,is_noetherian:[25,17],cours:25,awkward:17,divid:[0,20,13,31,17],rather:16,anoth:[26,28,21,31,17],mapl:20,divis:19,simpl:[4,25,31,17],isn:[15,25],rbar:31,"_test_categori":[5,17,18],tprime:26,gcd_longlong:16,associ:[0,17,31,20,21,25],"short":[4,20],author:[0,16,29,17,18,19,20,21,23,9,4,25,13],ambigu:26,zerodivisionerror:31,matrixspac:[25,21,17,18],qq_:26,multivari:[0,29,31,17,21,10,26,25],help:26,infinitepolynomialr:25,eroc:0,paper:9,through:28,hierarchi:17,dedekinddomainel:36,paramet:17,"22044604925031e":17,bypass:25,im_gen:21,might:17,unique_represent:[4,20],"return":[5,0,28,16,29,31,17,18,19,20,21,15,3,23,4,9,10,26,25,13,33],coeffic:29,framework:[25,17],complain:18,bigger:21,conic:26,iff:31,fulli:29,prime_subfield:17,valuat:[28,21,13,31,14],subsystem:26,idea:5,realli:[15,4],principal_id:17,expect:15,reduct:[25,21,31],robert:16,is_field:[4,0,17,25],print:[15,4,28,17],advanc:17,guess:[26,20],gfun:20,reason:[17,14],base:[],put:[25,31],basi:[26,31,17,18],thread:9,omit:16,inv3:26,base_extend:[31,17],commutative_algebra:11,obviou:15,exchang:26,misc:33,number:[],apitzsch:19,done:[19,17,10],least:[26,15,31],stabl:19,twoternaryquadrat:26,fanci:18,differ:[26,15,4,31],construct:[0,31,17,20,21,10,26,25],is_zero:[15,21,13],option:[16,29,31,17,19,20,25,13],groebner:[31,18],pari:[19,20,9,16,23],uniquerepresent:[4,20],king:[25,21,17,18],cyclic:31,remov:[25,8,23],is_ringhomomorph:21,berlekamp:20,comput:[31,18,19,23,9,13],polynomial_r:20,packag:[19,20],a30:26,checksum:23,zeilberg:20,equival:31,randint:[26,17],self:[15,0,28,29,31,17,19,20,21,26,25,13],also:[15,29,31,17,20,23,26,25,13,14],jacobian:26,previou:17,reach:28,freemodul:10,most:[15,0,28,16,29,31,17,19,20,21,23,4,26,25,33],alpha:[21,31],q_rnd:26,cover:[25,21,29],"_repr_opt":17,cdf:[0,17],frobeniusendomorphism_gener:21,"_test_some_el":17,xgcd_int:16,find:[33,31],coerc:[15,31,17,18,20,21,25],indexerror:15,pretti:9,factor:[],abelian:17,contfrac:4,express:20,commutativ:[25,20,35,17],longest:17,twoquaternaryquadrat:26,keyword:17,"_test_elements_neq":17,arxiv:19,ideal_pid:31,common:[26,15,33,31,17],class_numb:0,set:[15,28,29,31,17,19,21,10,25],art:26,dump:[15,0,29,31,21,10,13],set_default_prec:21,see:[15,7,31,17,2,32,34,18,8,22,23,11,9,10,36,26,25,37,35],arg:[0,28,17,31,4,26],close:[16,17],someth:[15,28],altern:26,syntact:26,letterplac:[25,17],numer:[0,20,13,28],induc:21,fpt_fp_section:28,ringhomomorphism_im_gen:21,solv:19,integral_closur:17,miscellan:[],both:[28,16,33,31,17],last:[15,0,28,29,31,17,19,20,21,23,26,25,33],annual:13,alon:15,fieldid:[29,31],load:[15,0,29,31,21,10,13],is_ringhomset:10,point:26,instanti:26,arith_llong:16,residu:31,zeta:17,fractionfield:[0,28,13],"_fractionfieldelement__numer":13,add:[15,25,14],integermodring_generic_with_categori:17,binaryquart:26,strategi:28,addison:31,b_k:23,glossary_of_invariant_theori:26,imag:[26,25,21],coordin:26,b01:26,b00:26,b02:26,unifi:17,abov:[15,25],error:[15,25,17],atimac:31,itself:[25,21,31,17],letterplaceid:18,rif:15,quadrat:[26,9],vanish:26,inhomogeneous_quadratic_form:26,minim:[20,31],belong:[31,17],rdf:[15,17],"_uniq":15,is_exact:[4,0,17],covari:26,user:26,implement:[],recent:[15,0,28,29,31,17,19,20,21,23,26,25,33],lower:16,entri:[26,17],pickl:[28,13,10],eisensteind:26,salvi:20,debug_level:19,bernmm_bern_modp:9,theta_covari:26,invarianttheoryfactori:26,theoret:[25,21],theorem:[19,25],input:[15,0,28,16,29,31,17,19,20,21,8,3,23,4,9,26,25,13,33],stein:[0,16,29,23,25,13],format:[15,23],big:[],subfield:[8,17],plusinfinityel:15,bit:[15,21,31,17],characterist:[4,0,21,17,25],buhler:23,print_mod:21,formal:10,knock:25,t_invari:26,resolv:31,doron:20,princip:[],theta_prim:26,often:[26,0],creation:[31,14],some:[15,0,31,17,19,23,4,26,25],back:28,understood:26,bernoulli_mod_p_singl:23,brent:19,scale:[26,28],substitut:26,mathemat:[19,20],larg:[16,21],prod:[19,25],frobeniu:[21,17],run:[5,17,18,20,26,25],pos_inf:15,integral_domain:[1,17],salmon:26,cyclotomicfield:[21,17],automorph:21,recurrence_repr:20,subtract:15,impos:25,noncommutative_id:[25,31,18],primary_decomposit:31,inhomogen:26,"_test_an_el":17,principalidealdomainel:37,realfield:[15,21,13,17],frob:[21,17],unsignedinfinityr:15,kohel:[0,13],inclus:[28,16,21],ringhomomorphism_coercion:[28,21],minimal_associated_prim:31,delta_prime_invari:26,"long":[26,19,20,23],custom:25,arithmet:[],includ:[0,13,31,17],suit:17,forward:17,perform:[17,23],int_:19,steenrod:[17,18],properli:[19,21,17],sqrt3:15,sqrt2:[21,33],decomposit:31,delta:26,line:19,cfinitesequences_generic_with_categori:20,consist:15,"_power":25,similar:31,curv:26,constant:[26,20,28],doesn:[0,21,14],repres:[15,20,29,28,17],plusinfin:15,unsigned_oo:15,polynomia:26,b12:26,b11:26,retract:25,quotientring_gener:25,assertionerror:15,underlying_map:21,sided:18,polynomialr:[0,29,31,17,21,10,26,25,13],william:[0,16,29,23,25,13],slice:20,ternari:26,monic:28,cdict:13,aga:17,discrimin:26,apply_map:26,code:[15,4,31,17,23],partial:[19,28,31],cython:[],simon:[25,21,17,18],send:[15,21],sens:[26,25,21],embedded_prim:31,factorint:19,implicitli:[0,31,14],covariant_con:26,cfinitesequ:20,"try":[15,31,17],rational_field:17,pleas:17,smaller:[15,21],inverse_mod_longlong:16,cff:4,natur:[26,25,20,21,10],blanklin:[25,18],verify_bernoulli_mod_p:23,odd:[26,20],append:25,compat:[0,31,17,25],index:[26,6,20],compar:[26,15],access:20,is_finit:[4,0,17],len:[15,16,31,19,26,25],closur:17,let:[15,25,21,31],lex:[26,29,31],sinc:[15,0,16,31,17,21,4,26,25],convert:[26,20,21],larger:16,converg:[0,21],unpickle_fpt_el:28,chang:[26,21,31,17],coercibl:[31,17],appli:[25,31],"boolean":[26,19,16],powerseriesr:[21,17],associated_prim:31,from:[15,0,28,31,17,19,20,21,23,4,9,10,26,25,13],doubl:15,dedekind_domain:34,next:[25,28,21],fibo:20,commut:[],sort:13,ringhomset_quo_r:10,benchmark:31,invariant_of_a_binary_form:26,trail:20,alia:[26,5,20,25],foggiest:5,obvious:21,fetch:15,proof:[4,0,25,17,19],tau:31,pancratz:13,tab:26,onlin:26,gcd:[0,13,31,17],six:20,cardin:17,laurentseriesr:21,instead:[15,19,28,16,17],frac:[0,28,17],singular:[25,31],redund:17,birkhaus:20,essenti:18,correspond:[26,17],element:[],issu:[31,17,14],allow:[26,25,20],move:17,perfect:13,chosen:17,contstruct:26,multimodular:9,massei:20,"_matrix_":26,ideal_monoid:[5,17,18],crash:16,greater:[19,28],nonneg:[20,17],python:[26,20,16,17],bernoulli:[],overal:26,delta_invari:26,trac:[15,31,17,18,19,21,8,4,25,13],anyth:31,subset:20,eisenstein:[26,17],our:[25,21],special:[26,31,18],out:[25,21,13,31],variabl:[29,31,20,21,3,26,25],ideal_class:[31,17],matrix:[26,15,20,21],rep:29,categori:[0,28,31,17,20,21,10,4,25],rel:[31,28,21,17,14],matric:[4,25,21,18],reduction_map:31,random_el:[4,0,17,25],katsura:31,manipul:20,dictionari:26,prime_rang:16,quo:[25,21,29,17],j_covari:26,big_oh:14,keep:31,length:[20,17,3],geometri:26,num_thread:9,softwar:20,parent_gen:[25,17],severalalgebraicform:26,idealmonoid_c:[5,18],finitefield:[13,17],"_test_distribut":17,adjoint:26,system:26,wrapper:[],stephan:20,"final":[26,21],cyc:26,f_covari:26,accompani:23,exactli:[17,3],haven:5,alarminterrupt:19,structur:[5,15,28,29,31,17,20,4,26,25,13],charact:17,w530:26,fail:[5,21,14],coher:[0,13],ringel:[15,28,29],need:[17,31,19,21,26,25],hessian:26,which:[15,0,31,17,20,21,5,26,25],singl:[26,15,21,17,23],unless:[15,17],"_fractionfieldelement__denomin":13,brent93:19,discov:26,is_euclideandomainel:7,"class":[],r200:21,laurent:[20,21],dens:[25,21,18],phi_invari:26,univari:[],determin:[29,31,17,21,8,26,25],fact:[25,17],verbos:[19,17,18],delta_prim:26,zero_id:[25,17],has_standard_involut:17,trivial:[16,17],anywai:17,element_is_atom:17,should:[26,25,4,31,23],hopf:17,next_prim:[19,23],rationalfield_with_categori:17,rational_recon_longlong:16,joint:26,increas:[19,28],treatis:26,quaternari:26,wpternarycub:26,finitenumb:15,stuff:18,integr:[],contain:[33,31],view:21,modulo:[],charpoli:4,get_form:26,integraldomainel:12,is_integral_domain:[25,17],endomorph:[21,17,10],unsigned_infin:15,modulu:[25,31,17],twosid:[25,17,18],correctli:15,boundari:23,favor:17,bruno:20,is_commutativeringel:22,theta:[26,13],fractionfield_1poly_field:[0,28],kei:26,joe:[0,13],voight:17,inverse_imag:21,equal:[15,17,8,10,26,25,13],algebraic_closur:17,instanc:[1,17,31,21,26,25],equat:[20,31],cartesianproduct:25,is_prim:31,distinguish:17,respect:[26,25,17,14],compos:21,treat:26,inv:26,"_test_pickl":[17,18],togeth:26,twoalgebraicform:26,multi:21,unsignedinfinityring_class:15,is_princip:31,ringhomomorphism_from_quoti:21,defin:[15,28,31,17,33,20,21,26,25,13],aronhold:26,irreduc:31,dual:26,noetherian:[25,17],complexfield:17,uniti:17,sqrt:[15,28,33,17],handl:15,largest:31,infer:31,fieldel:[4,32,20,13],phi:[26,21,31,10],http:[26,19,8],cubic:26,"_set_lift":21,henrici:13,off:[19,20,25],well:[15,31,17,14],thought:26,exampl:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,31,32,33,34,35,36,37],command:19,is_primari:31,usual:[26,25,17],distanc:26,less:[26,15,28,3],obtain:[26,19,25],integral_domain_el:12,simpli:17,paul:20,pari_prim:16,aurifeuillian:19,field:[],ideal_gener:[5,31,17,18],semigroup:17,five:15,know:[17,14],recurs:21,recurr:20,loss:17,like:[31,17],success:17,biquadrat:26,primepi:16,necessari:[28,17],page:[6,31],drop:20,noetherianr:17,proper:[20,17],guarante:17,librari:[],field_el:32,lead:[28,29],commutativeringel:22,leav:28,nonempti:17,ralf:20,polyring_fpt_coerc:28,cfinitesequences_gener:20,weslei:31,journal:20,although:17,offset:20,quotientr:25,about:18,actual:[26,25,13,17,10],quadraticform:26,testsuit:[5,17,18,20,26,25],commutativealgebra:[11,17],constructor:[26,0,31,17,14],fals:[15,0,28,16,31,17,19,20,21,4,8,23,24,10,26,25,13],own:[15,8,17],primal:19,ring_of_integ:[0,17],automat:[13,31],gens_reduc:31,factor_using_pari:19,endormorph:21,support:[26,13,31,17],trigger:15,"var":[26,20,17],"function":[],euclidean_domain:2,triangular:20,defining_id:25,bug:[15,17],count:25,made:15,whether:[15,0,31,17,19,21,26,25,13],below:[25,20,29,31],limit:19,otherwis:[28,17,19,21,8,33,25,13],problem:14,evalu:26,"int":[19,16],dure:[31,17],pid:[31,17],inf:15,integerring_class:17,detail:[26,9,8],other:[15,31,17,21,26,25,14],bool:[28,29,31,17,19,21,23,13],involut:17,quaternary_quadrat:26,"_test_eq":[17,18],rule:15,integer_r:17,you:[26,19,31,17,14],invari:[],"_test_el":[5,25,17]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:function","4":"py:attribute","5":"py:exception"},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","function","Python function"],"4":["py","attribute","Python attribute"],"5":["py","exception","Python exception"]},filenames:["sage/rings/fraction_field","sage/rings/integral_domain","sage/rings/euclidean_domain","sage/rings/monomials","sage/rings/contfrac","sage/rings/ideal_monoid","index","sage/rings/euclidean_domain_element","sage/rings/field","sage/rings/bernmm","sage/rings/homset","sage/rings/commutative_algebra","sage/rings/integral_domain_element","sage/rings/fraction_field_element","sage/rings/big_oh","sage/rings/infinity","sage/rings/fast_arith","sage/rings/ring","sage/rings/noncommutative_ideals","sage/rings/factorint","sage/rings/cfinite_sequence","sage/rings/morphism","sage/rings/commutative_ring_element","sage/rings/bernoulli_mod_p","sage/rings/principal_ideal_domain","sage/rings/quotient_ring","sage/rings/invariant_theory","sage/rings/ring_element","sage/rings/fraction_field_FpT","sage/rings/quotient_ring_element","sage/rings/commutative_algebra_element","sage/rings/ideal","sage/rings/field_element","sage/rings/misc","sage/rings/dedekind_domain","sage/rings/commutative_ring","sage/rings/dedekind_domain_element","sage/rings/principal_ideal_domain_element"],titles:["Fraction Field of Integral Domains","Abstract base class for integral domains","Abstract base class for Euclidean domains","Monomials","Continued fraction field","Monoid of ideals in a commutative ring","General Rings, Ideals, and Morphisms","Base class for Euclidean domain elements","Abstract base class for fields","Cython wrapper for bernmm library","Space of homomorphisms between two rings","Abstract base class for commutative algebras","Base class for integral domain elements","Fraction Field Elements","Big O for various types (power series, p-adics, etc.)","Infinity Rings","Basic arithmetic with c-integers.","Rings","Generic implementation of one- and two-sided ideals of non-commutative rings.","Integer factorization functions","C-Finite Sequences","Homomorphisms of rings","Base class for commutative ring elements","Bernoulli numbers modulo p","Abstract base class for principal ideal domains","Quotient Rings","Classical Invariant Theory","Base class for ring elements","Univariate rational functions over prime fields","Quotient Ring Elements","Base class for commutative algebra elements","Ideals of commutative rings.","Base class for field elements","Miscellaneous utilities","Base class for Dedekind domains","Abstract base class for commutative rings","Base class for Dedekind domain elements","Base class for principal ideal domain elements"],objects:{"sage.rings.fraction_field_FpT.FpT_iter":{next:[28,2,1,""]},"sage.rings.invariant_theory.SeveralAlgebraicForms":{n_forms:[26,2,1,""],homogenized:[26,2,1,""],get_form:[26,2,1,""]},"sage.rings.cfinite_sequence.CFiniteSequences_generic":{polynomial_ring:[20,2,1,""],guess:[20,2,1,""],an_element:[20,2,1,""],ngens:[20,2,1,""],Element:[20,4,1,""],from_recurrence:[20,2,1,""],fraction_field:[20,2,1,""],gen:[20,2,1,""]},"sage.rings.misc":{composite_field:[33,3,1,""]},"sage.rings.ring":{IntegralDomain:[17,1,1,""],Algebra:[17,1,1,""],CommutativeAlgebra:[17,1,1,""],is_Ring:[17,3,1,""],CommutativeRing:[17,1,1,""],Field:[17,1,1,""],EuclideanDomain:[17,1,1,""],DedekindDomain:[17,1,1,""],PrincipalIdealDomain:[17,1,1,""],NoetherianRing:[17,1,1,""],Ring:[17,1,1,""]},"sage.rings.infinity.InfinityRing_class":{is_commutative:[15,2,1,""],ngens:[15,2,1,""],gens:[15,2,1,""],fraction_field:[15,2,1,""],is_zero:[15,2,1,""],gen:[15,2,1,""]},"sage.rings.bernoulli_mod_p":{verify_bernoulli_mod_p:[23,3,1,""],bernoulli_mod_p_single:[23,3,1,""],bernoulli_mod_p:[23,3,1,""]},"sage.rings.infinity":{UnsignedInfinityRing_class:[15,1,1,""],UnsignedInfinity:[15,1,1,""],MinusInfinity:[15,1,1,""],FiniteNumber:[15,1,1,""],PlusInfinity:[15,1,1,""],InfinityRing_class:[15,1,1,""],AnInfinity:[15,1,1,""],is_Infinite:[15,3,1,""],test_signed_infinity:[15,3,1,""],LessThanInfinity:[15,1,1,""],SignError:[15,5,1,""],test_comparison:[15,3,1,""]},"sage.rings.homset.RingHomset_generic":{has_coerce_map_from:[10,2,1,""],natural_map:[10,2,1,""]},"sage.rings.ring.EuclideanDomain":{parameter:[17,2,1,""]},"sage.rings.infinity.FiniteNumber":{sqrt:[15,2,1,""]},"sage.rings.ideal.Ideal_pid":{is_prime:[31,2,1,""],is_maximal:[31,2,1,""],residue_field:[31,2,1,""],reduce:[31,2,1,""],gcd:[31,2,1,""]},"sage.rings.quotient_ring_element":{QuotientRingElement:[29,1,1,""]},"sage.rings.ring.IntegralDomain":{is_integrally_closed:[17,2,1,""],is_integral_domain:[17,2,1,""],is_field:[17,2,1,""]},"sage.rings.ring.Algebra":{characteristic:[17,2,1,""],has_standard_involution:[17,2,1,""]},"sage.rings.morphism.FrobeniusEndomorphism_generic":{power:[21,2,1,""]},"sage.rings.infinity.AnInfinity":{lcm:[15,2,1,""]},"sage.rings.ideal_monoid.IdealMonoid_c":{ring:[5,2,1,""],Element:[5,4,1,""]},"sage.rings":{commutative_algebra:[11,0,0,"-"],cfinite_sequence:[20,0,0,"-"],bernoulli_mod_p:[23,0,0,"-"],quotient_ring_element:[29,0,0,"-"],misc:[33,0,0,"-"],principal_ideal_domain:[24,0,0,"-"],commutative_ring:[35,0,0,"-"],invariant_theory:[26,0,0,"-"],field_element:[32,0,0,"-"],integral_domain_element:[12,0,0,"-"],ring_element:[27,0,0,"-"],ring:[17,0,0,"-"],fraction_field_element:[13,0,0,"-"],commutative_algebra_element:[30,0,0,"-"],integral_domain:[1,0,0,"-"],dedekind_domain:[34,0,0,"-"],field:[8,0,0,"-"],ideal:[31,0,0,"-"],fraction_field_FpT:[28,0,0,"-"],factorint:[19,0,0,"-"],euclidean_domain_element:[7,0,0,"-"],noncommutative_ideals:[18,0,0,"-"],infinity:[15,0,0,"-"],contfrac:[4,0,0,"-"],euclidean_domain:[2,0,0,"-"],dedekind_domain_element:[36,0,0,"-"],ideal_monoid:[5,0,0,"-"],quotient_ring:[25,0,0,"-"],fast_arith:[16,0,0,"-"],big_oh:[14,0,0,"-"],commutative_ring_element:[22,0,0,"-"],fraction_field:[0,0,0,"-"],principal_ideal_domain_element:[37,0,0,"-"],monomials:[3,0,0,"-"],bernmm:[9,0,0,"-"],homset:[10,0,0,"-"],morphism:[21,0,0,"-"]},"sage.rings.monomials":{monomials:[3,3,1,""]},"sage.rings.fraction_field_element.FractionFieldElement_1poly_field":{support:[13,2,1,""],is_integral:[13,2,1,""]},"sage.rings.morphism.RingHomomorphism_from_base":{underlying_map:[21,2,1,""],is_identity:[21,2,1,""]},"sage.rings.ring.PrincipalIdealDomain":{content:[17,2,1,""],is_noetherian:[17,2,1,""],gcd:[17,2,1,""],class_group:[17,2,1,""]},"sage.rings.invariant_theory.QuadraticForm":{as_QuadraticForm:[26,2,1,""],matrix:[26,2,1,""],discriminant:[26,2,1,""],scaled_coeffs:[26,2,1,""],dual:[26,2,1,""],coeffs:[26,2,1,""],monomials:[26,2,1,""]},"sage.rings.morphism.RingHomomorphism_im_gens":{im_gens:[21,2,1,""]},"sage.rings.fraction_field_FpT.FpT":{iter:[28,2,1,""]},"sage.rings.contfrac.ContinuedFractionField":{is_exact:[4,2,1,""],characteristic:[4,2,1,""],an_element:[4,2,1,""],is_finite:[4,2,1,""],random_element:[4,2,1,""],Element:[4,1,1,""],is_field:[4,2,1,""],some_elements:[4,2,1,""],order:[4,2,1,""]},"sage.rings.fraction_field_element":{is_FractionFieldElement:[13,3,1,""],make_element_old:[13,3,1,""],FractionFieldElement_1poly_field:[13,1,1,""],FractionFieldElement:[13,1,1,""],make_element:[13,3,1,""]},"sage.rings.commutative_ring_element":{is_CommutativeRingElement:[22,3,1,""]},"sage.rings.ring.Ring":{zeta_order:[17,2,1,""],is_integral_domain:[17,2,1,""],is_commutative:[17,2,1,""],one:[17,2,1,""],zero:[17,2,1,""],is_noetherian:[17,2,1,""],zeta:[17,2,1,""],category:[17,2,1,""],ideal:[17,2,1,""],zero_ideal:[17,2,1,""],is_field:[17,2,1,""],unit_ideal:[17,2,1,""],principal_ideal:[17,2,1,""],is_prime_field:[17,2,1,""],is_exact:[17,2,1,""],epsilon:[17,2,1,""],is_finite:[17,2,1,""],is_ring:[17,2,1,""],is_subring:[17,2,1,""],random_element:[17,2,1,""],cardinality:[17,2,1,""],quo:[17,2,1,""],ideal_monoid:[17,2,1,""],quotient_ring:[17,2,1,""],order:[17,2,1,""],base_extend:[17,2,1,""],quotient:[17,2,1,""]},"sage.rings.principal_ideal_domain":{is_PrincipalIdealDomain:[24,3,1,""]},"sage.rings.euclidean_domain":{is_EuclideanDomain:[2,3,1,""]},"sage.rings.ring.CommutativeRing":{ideal_monoid:[17,2,1,""],extension:[17,2,1,""],krull_dimension:[17,2,1,""],is_commutative:[17,2,1,""],fraction_field:[17,2,1,""],frobenius_endomorphism:[17,2,1,""]},"sage.rings.integral_domain":{is_IntegralDomain:[1,3,1,""]},"sage.rings.homset":{is_RingHomset:[10,3,1,""],RingHomset_generic:[10,1,1,""],RingHomset:[10,3,1,""],RingHomset_quo_ring:[10,1,1,""]},"sage.rings.field_element":{is_FieldElement:[32,3,1,""]},"sage.rings.factorint":{factor_using_pari:[19,3,1,""],factor_aurifeuillian:[19,3,1,""],factor_cunningham:[19,3,1,""],aurifeuillian:[19,3,1,""],factor_trial_division:[19,3,1,""]},"sage.rings.dedekind_domain":{is_DedekindDomain:[34,3,1,""]},"sage.rings.infinity.PlusInfinity":{sqrt:[15,2,1,""]},"sage.rings.noncommutative_ideals":{Ideal_nc:[18,1,1,""],IdealMonoid_nc:[18,1,1,""]},"sage.rings.infinity.UnsignedInfinityRing_class":{gen:[15,2,1,""],less_than_infinity:[15,2,1,""],fraction_field:[15,2,1,""],ngens:[15,2,1,""],gens:[15,2,1,""]},"sage.rings.morphism.RingHomomorphism_from_quotient":{morphism_from_cover:[21,2,1,""]},"sage.rings.invariant_theory.InvariantTheoryFactory":{binary_quartic:[26,2,1,""],ternary_cubic:[26,2,1,""],quadratic_form:[26,2,1,""],ternary_biquadratic:[26,2,1,""],quaternary_biquadratic:[26,2,1,""],ternary_quadratic:[26,2,1,""],binary_quadratic:[26,2,1,""],quaternary_quadratic:[26,2,1,""],inhomogeneous_quadratic_form:[26,2,1,""]},"sage.rings.invariant_theory.TwoAlgebraicForms":{second:[26,2,1,""],first:[26,2,1,""]},"sage.rings.fraction_field":{FractionField_generic:[0,1,1,""],is_FractionField:[0,3,1,""],FractionField_1poly_field:[0,1,1,""],FractionField:[0,3,1,""]},"sage.rings.commutative_ring":{is_CommutativeRing:[35,3,1,""]},"sage.rings.quotient_ring":{is_QuotientRing:[25,3,1,""],QuotientRing_nc:[25,1,1,""],QuotientRing:[25,3,1,""],QuotientRing_generic:[25,1,1,""]},"sage.rings.invariant_theory.TwoTernaryQuadratics":{J_covariant:[26,2,1,""],Theta_prime_invariant:[26,2,1,""],F_covariant:[26,2,1,""],Delta_prime_invariant:[26,2,1,""],syzygy:[26,2,1,""],Delta_invariant:[26,2,1,""],Theta_invariant:[26,2,1,""]},"sage.rings.bernmm":{bernmm_bern_modp:[9,3,1,""],bernmm_bern_rat:[9,3,1,""]},"sage.rings.invariant_theory":{TwoQuaternaryQuadratics:[26,1,1,""],TernaryCubic:[26,1,1,""],TernaryQuadratic:[26,1,1,""],SeveralAlgebraicForms:[26,1,1,""],QuadraticForm:[26,1,1,""],BinaryQuartic:[26,1,1,""],TwoTernaryQuadratics:[26,1,1,""],AlgebraicForm:[26,1,1,""],TwoAlgebraicForms:[26,1,1,""],InvariantTheoryFactory:[26,1,1,""],FormsBase:[26,1,1,""]},"sage.rings.commutative_algebra":{is_CommutativeAlgebra:[11,3,1,""]},"sage.rings.ring.NoetherianRing":{is_noetherian:[17,2,1,""]},"sage.rings.morphism.RingHomomorphism_cover":{kernel:[21,2,1,""]},"sage.rings.invariant_theory.BinaryQuartic":{h_covariant:[26,2,1,""],scaled_coeffs:[26,2,1,""],coeffs:[26,2,1,""],EisensteinD:[26,2,1,""],EisensteinE:[26,2,1,""],g_covariant:[26,2,1,""],monomials:[26,2,1,""]},"sage.rings.invariant_theory.FormsBase":{ring:[26,2,1,""],is_homogeneous:[26,2,1,""],variables:[26,2,1,""]},"sage.rings.dedekind_domain_element":{is_DedekindDomainElement:[36,3,1,""]},"sage.rings.quotient_ring_element.QuotientRingElement":{lc:[29,2,1,""],variables:[29,2,1,""],lm:[29,2,1,""],reduce:[29,2,1,""],lt:[29,2,1,""],lift:[29,2,1,""],monomials:[29,2,1,""],is_unit:[29,2,1,""]},"sage.rings.ring.Field":{integral_closure:[17,2,1,""],krull_dimension:[17,2,1,""],ideal:[17,2,1,""],is_noetherian:[17,2,1,""],is_field:[17,2,1,""],algebraic_closure:[17,2,1,""],is_integrally_closed:[17,2,1,""],prime_subfield:[17,2,1,""],divides:[17,2,1,""],fraction_field:[17,2,1,""]},"sage.rings.cfinite_sequence.CFiniteSequence":{recurrence_repr:[20,2,1,""],series:[20,2,1,""],denominator:[20,2,1,""],numerator:[20,2,1,""],ogf:[20,2,1,""],coefficients:[20,2,1,""]},"sage.rings.invariant_theory.TernaryCubic":{J_covariant:[26,2,1,""],polar_conic:[26,2,1,""],scaled_coeffs:[26,2,1,""],S_invariant:[26,2,1,""],T_invariant:[26,2,1,""],coeffs:[26,2,1,""],syzygy:[26,2,1,""],monomials:[26,2,1,""],Theta_covariant:[26,2,1,""],Hessian:[26,2,1,""]},"sage.rings.fraction_field_FpT.Polyring_FpT_coerce":{section:[28,2,1,""]},"sage.rings.integral_domain_element":{is_IntegralDomainElement:[12,3,1,""]},"sage.rings.ring.DedekindDomain":{is_integrally_closed:[17,2,1,""],integral_closure:[17,2,1,""],is_noetherian:[17,2,1,""],krull_dimension:[17,2,1,""]},"sage.rings.fraction_field.FractionField_generic":{is_exact:[0,2,1,""],base_ring:[0,2,1,""],characteristic:[0,2,1,""],is_finite:[0,2,1,""],random_element:[0,2,1,""],construction:[0,2,1,""],ngens:[0,2,1,""],ring:[0,2,1,""],gen:[0,2,1,""],is_field:[0,2,1,""]},"sage.rings.ideal":{Ideal_fractional:[31,1,1,""],Ideal_principal:[31,1,1,""],Katsura:[31,3,1,""],Cyclic:[31,3,1,""],FieldIdeal:[31,3,1,""],Ideal:[31,3,1,""],Ideal_pid:[31,1,1,""],Ideal_generic:[31,1,1,""],is_Ideal:[31,3,1,""]},"sage.rings.invariant_theory.AlgebraicForm":{polynomial:[26,2,1,""],homogenized:[26,2,1,""],transformed:[26,2,1,""],form:[26,2,1,""],coefficients:[26,2,1,""]},"sage.rings.quotient_ring.QuotientRing_nc":{defining_ideal:[25,2,1,""],cover:[25,2,1,""],cover_ring:[25,2,1,""],characteristic:[25,2,1,""],is_noetherian:[25,2,1,""],is_commutative:[25,2,1,""],ngens:[25,2,1,""],lifting_map:[25,2,1,""],is_integral_domain:[25,2,1,""],ideal:[25,2,1,""],lift:[25,2,1,""],is_field:[25,2,1,""],ambient:[25,2,1,""],retract:[25,2,1,""],term_order:[25,2,1,""],construction:[25,2,1,""],Element:[25,4,1,""],gen:[25,2,1,""]},"sage.rings.infinity.MinusInfinity":{sqrt:[15,2,1,""]},"sage.rings.fraction_field.FractionField_1poly_field":{ring_of_integers:[0,2,1,""],class_number:[0,2,1,""],maximal_order:[0,2,1,""]},"sage.rings.noncommutative_ideals.Ideal_nc":{side:[18,2,1,""]},"sage.rings.morphism.RingHomomorphism":{pushforward:[21,2,1,""],is_injective:[21,2,1,""],lift:[21,2,1,""],is_zero:[21,2,1,""],inverse_image:[21,2,1,""]},"sage.rings.fraction_field_FpT.ZZ_FpT_coerce":{section:[28,2,1,""]},"sage.rings.ideal.Ideal_principal":{divides:[31,2,1,""],gen:[31,2,1,""],is_principal:[31,2,1,""]},"sage.rings.euclidean_domain_element":{is_EuclideanDomainElement:[7,3,1,""]},"sage.rings.fraction_field_FpT.Fp_FpT_coerce":{section:[28,2,1,""]},"sage.rings.cfinite_sequence":{CFiniteSequences:[20,3,1,""],CFiniteSequence:[20,1,1,""],CFiniteSequences_generic:[20,1,1,""]},"sage.rings.principal_ideal_domain_element":{is_PrincipalIdealDomainElement:[37,3,1,""]},"sage.rings.fast_arith":{arith_int:[16,1,1,""],prime_range:[16,3,1,""],arith_llong:[16,1,1,""]},"sage.rings.fraction_field_element.FractionFieldElement":{denominator:[13,2,1,""],numerator:[13,2,1,""],is_square:[13,2,1,""],reduce:[13,2,1,""],is_one:[13,2,1,""],is_zero:[13,2,1,""],valuation:[13,2,1,""]},"sage.rings.invariant_theory.TernaryQuadratic":{coeffs:[26,2,1,""],monomials:[26,2,1,""],scaled_coeffs:[26,2,1,""],covariant_conic:[26,2,1,""]},"sage.rings.contfrac":{ContinuedFractionField:[4,1,1,""]},"sage.rings.field":{is_PrimeField:[8,3,1,""]},"sage.rings.big_oh":{O:[14,3,1,""]},"sage.rings.ideal_monoid":{IdealMonoid:[5,3,1,""],IdealMonoid_c:[5,1,1,""]},"sage.rings.fraction_field_FpT":{FpTElement:[28,1,1,""],FpT_Polyring_section:[28,1,1,""],Fp_FpT_coerce:[28,1,1,""],Polyring_FpT_coerce:[28,1,1,""],FpT:[28,1,1,""],FpT_iter:[28,1,1,""],FpT_Fp_section:[28,1,1,""],ZZ_FpT_coerce:[28,1,1,""],unpickle_FpT_element:[28,3,1,""]},"sage.rings.ring.CommutativeAlgebra":{is_commutative:[17,2,1,""]},"sage.rings.morphism":{is_RingHomomorphism:[21,3,1,""],RingHomomorphism_coercion:[21,1,1,""],FrobeniusEndomorphism_generic:[21,1,1,""],RingHomomorphism_im_gens:[21,1,1,""],RingHomomorphism_cover:[21,1,1,""],RingHomomorphism_from_quotient:[21,1,1,""],RingHomomorphism:[21,1,1,""],RingMap:[21,1,1,""],RingMap_lift:[21,1,1,""],RingHomomorphism_from_base:[21,1,1,""]},"sage.rings.fraction_field_FpT.FpTElement":{is_square:[28,2,1,""],subs:[28,2,1,""],numer:[28,2,1,""],denominator:[28,2,1,""],numerator:[28,2,1,""],sqrt:[28,2,1,""],next:[28,2,1,""],factor:[28,2,1,""],denom:[28,2,1,""],valuation:[28,2,1,""]},"sage.rings.fast_arith.arith_llong":{gcd_longlong:[16,2,1,""],rational_recon_longlong:[16,2,1,""],inverse_mod_longlong:[16,2,1,""]},"sage.rings.fast_arith.arith_int":{xgcd_int:[16,2,1,""],rational_recon_int:[16,2,1,""],inverse_mod_int:[16,2,1,""],gcd_int:[16,2,1,""]},"sage.rings.ideal.Ideal_generic":{category:[31,2,1,""],is_trivial:[31,2,1,""],gens_reduced:[31,2,1,""],gen:[31,2,1,""],base_ring:[31,2,1,""],is_prime:[31,2,1,""],is_primary:[31,2,1,""],apply_morphism:[31,2,1,""],associated_primes:[31,2,1,""],reduce:[31,2,1,""],gens:[31,2,1,""],ngens:[31,2,1,""],is_principal:[31,2,1,""],primary_decomposition:[31,2,1,""],is_maximal:[31,2,1,""],norm:[31,2,1,""],ring:[31,2,1,""],minimal_associated_primes:[31,2,1,""],absolute_norm:[31,2,1,""],embedded_primes:[31,2,1,""]},"sage.rings.invariant_theory.TwoQuaternaryQuadratics":{J_covariant:[26,2,1,""],Theta_prime_invariant:[26,2,1,""],Delta_prime_invariant:[26,2,1,""],T_covariant:[26,2,1,""],Phi_invariant:[26,2,1,""],T_prime_covariant:[26,2,1,""],syzygy:[26,2,1,""],Delta_invariant:[26,2,1,""],Theta_invariant:[26,2,1,""]}},titleterms:{domain:[0,7,1,2,34,24,36,12,37],modulo:23,classic:26,quotient:[25,29],"abstract":[1,2,8,24,35,11],number:23,indic:6,basic:16,tabl:6,ring:[5,6,29,31,17,18,21,15,22,35,10,25,27],todo:[25,31],librari:9,cython:9,miscellan:33,dedekind:[34,36],space:10,monoid:5,two:[10,18],wrapper:9,field:[0,28,32,8,4,13],ideal:[5,6,31,18,24,37],arithmet:16,homomorph:[21,10],fraction:[4,0,13],between:10,type:14,commut:[5,30,31,18,22,35,11],univari:28,"function":[19,28],non:18,over:28,power:14,algebra:[11,30],sequenc:20,gener:[6,18],factor:19,ration:28,infin:15,continu:4,util:33,monomi:3,variou:14,adic:14,big:14,theori:26,finit:20,"class":[7,1,30,2,32,34,8,22,24,35,36,11,12,27,37],morphism:6,prime:28,bernmm:9,bernoulli:23,euclidean:[7,2],integ:[19,16],element:[7,29,30,32,37,22,36,12,27,13],etc:14,princip:[24,37],base:[7,1,30,2,32,34,8,22,24,35,36,11,12,27,37],integr:[0,1,12],implement:18,invari:26,side:18,seri:14}})12