Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

11th grade-all tasks

2151 views
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "# <div dir=\"RTL\"> החבילה SymPy </div>\n",
    "______________\n",
    "<div dir=\"RTL\">\n",
    "    SymPy היא ספרייה למתמטיקה סימבולית המיועדת ל- Python. היא כתובה כולה רק ב-Python, כך שאין צורך בסיפריות נוספות כדי להשתמש בה. בכוונת מפתחי ה- Sympy  לפתחה עד כדי מערכת המכילה את כל התכונות והיכולות של תוכנות CAS  (Computer Algebra System). המפתחים מנסים לשמור את הקוד פשוט ככל האפשר כדי ליצור חבילה קלה להבנה ושאפשר להרחיבה בקלות. \n",
    "באופן בסיסי Sympy היא מחשבון סימבולי, אבל יתרונה בכך שאפשר להשתמש בה בתוכנית מחשב.\n",
    "\n",
    "</div>\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
    "import sympy as sp\n",
    "#from sympy import *\n",
    "sp.init_printing()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
    "import math"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$1.4142135623730951$$"
      ]
     },
     "execution_count": 3,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "math.sqrt(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\sqrt{2}$$"
      ]
     },
     "execution_count": 4,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.sqrt(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$1.0471975511966$$"
      ]
     },
     "execution_count": 5,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.acos(0.5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$1.0471975511966$$"
      ]
     },
     "execution_count": 6,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.acos(1/2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\">תרגיל 1</div>\n",
    "<div dir=\"RTL\">חשבו:  $$acos(-1)$$  </div>\n",
    "$$\\sqrt5$$\n",
    "$$\\sqrt9$$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$1.22464679914735 \\cdot 10^{-16}$$"
      ]
     },
     "execution_count": 12,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.sin(math.pi)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> Symbols </div>\n",
    "<div dir=\"RTL\"> האוביקט הבסיסי ב- Sympy הוא ה- Symbol אוביקט זה מייצג משתנה מתמטי. יצירת אובייקט זה נעשיית באמצעות הפונקציה Symbol </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\sin^{2}{\\left (\\alpha \\right )} + \\sin^{2}{\\left (\\beta \\right )}$$"
      ]
     },
     "execution_count": 13,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x,y,z=sp.symbols('x y z')\n",
    "alpha,beta,gamma=sp.symbols('alpha,beta,gamma')\n",
    "sp.sin(alpha)**2+sp.sin(beta)**2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> תרגיל 2 </div>\n",
    "<div dir=\"RTL\">בעזרת הפונקציה symbols צרו את המשתנים mu ו- sigma (החליפו את ה- ? בקוד המתאים) </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "'Symbol' object is not iterable",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-8-33eeddf750a1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmu\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'?'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[0mmu\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msigma\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mTypeError\u001b[0m: 'Symbol' object is not iterable"
     ]
    }
   ],
   "source": [
    "mu,sigma=sp.symbols('?')\n",
    "mu,sigma"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> תרגיל 3 </div>\n",
    "<div dir=\"RTL\">הגדירו  את הפונקציה $e^{ {-(x-\\mu)^2}\\over{\\sigma^2}}$ פונקציה זו מכונה פונקציית הפעמון.</div>\n",
    "<div dir=\"RTL\"><B> את הפונקציה $e^x$ מגדירים כ- (exp(x  </B></div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> גזירה של פונקציה</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$3 a x^{2}$$"
      ]
     },
     "execution_count": 10,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a=sp.Symbol('a')\n",
    "sp.diff(a*x**3,x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'bell' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-11-7a06e4fb7c64>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mbell\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m: name 'bell' is not defined"
     ]
    }
   ],
   "source": [
    "bell.diff(x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> שרטוט גרף באמצעות sympy.plotting </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAETCAYAAADqC8daAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW9//H3IoRBBCoyFBIIggmJKAEqM2IYBESFVm0b2zrVSq+Cte3trdr6FKzt9UK9/Wnl3j5YW1RUoFowrRcCCAFFgYBMCoIDYCAgiLbMgpD1+2MlyBQ4ISdn7b3P5/U850lOsnPyDZx8ss93r8FYaxERkWCp5bsAERE5lcJZRCSAFM4iIgGkcBYRCSCFs4hIACmcRUQCSOEsIhJACmcRkQCq7eObGmOaA32AVsBB4B1gubW2zEc9IiJBYxI5Q9AY0x+4H2gCrAR2AvWALKA98BLw39baPQkrSkQkgBIdzr8DnrDWlpzmc7WBa4EUa+3fzvAYfy4/boe1tlMlx/wBuBrYD9xmrV0Vj/pFRBIloeEcD8aYvsA+4NnThbMx5mpgtLX2GmNMD+Bxa23PRNcpIlIdXi4IGmMmG2MaH3e/rTFmXixfa61dBPzzDIeMAJ4tP3Yp0NgY06I69YqIJJqv0RqLgKXGmGHGmDuBOcBjcXrsNGDLcfdLyz8mIhIaXkZrWGsnGmPWAkXALqCLtfZjH7WIiARRdcP5nBrWkydPJjMzk4ceeog1a9Z8dfbs2dtXr15Nbm5uTF+/efNmrrvuutN+/x/+8If079//2or7HTp0YOHChW+dfJwxhjFjxhy7n5eXR15e3jn8NBJ1a9fCzTdD69bw3e9Cp05w6BAsXgyPPgqDBsFvfwsXXui7UgkJE9NR1trq3M7JiBEj7I4dO47dX7p0qe3cuXPMX79p0yZ76aWXnvZz//d//2eHDRtmrbV28eLFtkePHqc9zv3oIme2YIG1zZpZ+8IL1paVnfr5zz+39j/+w9qePa3dsCHx9UkoxZSv1R2tEbehHocPH6ZOnTpnPe473/kOCxYs4NNPP6VFixY89NBDHD58GGMMI0eOBGD06NEUFhbSoEEDJk2aRNeuXU95HGMM1fzZJeJefx2+9S14/nkYMODMx/7lLzB2rPuajIyElCfhFdOZc0LD+Te/+Q133303TZo0Oe3n58+fz4EDB7j22mtP+/l4UjjLmbz3HlxxBfz1r3DllbF9zf/+Lzz3HMybB/Xr12x9EmrBC+eCggLGjx9PvXr16Nq1K82aNePzzz/n/fffZ9WqVQwaNIhf/OIXNGvWrDo1xUThLJU5dAhGjIAbb4Qf/CD2r7MWvvc9aNzYBbVIJYIXzjfffDOTJ09m/PjxNG/enO3bt1O/fn1ycnLo168f9RN4uqFwlso88ACsWwcvvwwmtks3x+zbBwMHwpgxMGxYzdQnoRfTsyqhQ+neeusttm3bxvPPP09RUdEJnzt48GBCw1nkdNatgwULYMaMqgczwPnnu5Ebd9zhRnmcf37cS5QkkdAz5z/84Q/88Y9/ZOPGjaSlfTkvxFqLMYaNGzdWp5Yq0ZmznM4117ihcT/5SfUe5yc/gaZN4Ze/jE9dEinBa2tUuOuuu/jjH/9Yne9bbQpnOdmcOTBqlDvjjWHg0BmVlrrx0KtXQ3p6fOqTyAhuOAeBwlmOd+QIdO4Mv/kNfP3r8XnMBx6ATz6Bp56Kz+NJZMQUztoJRQR48UXo1s2N0oiX++6DVatgw4b4PaYkD4WzJD1r4ZFH4NvfPreLgJX5yldc2I8fH7/HlOShcJakV1joQnnIkPg/9t13u5EfpaXxf2yJNoWzJL1x4+DnP4/vWXOFCy+EW26Bx+K1IK4kDYWzJLWlS2HTJreGRk356U9h5UrYo50xpQoUzpLUnnkGfvELSE2tue/Rpg00agRTp9bc95Do0VA6SVqffQbt2sHGjVDJWlxxM2sW/OpXsGxZzX4fCQUNpRM5k8mT3YzAmg5mgMGDYedON7ROJBYKZ0lK1sKf/gR33pmY75eSAt//vvueIrFQW0OS0pIlbhTFhg01M0rjdLZscbMQt2yB885LzPeUQFJbQ6Qyf/qTW6s5UcEMbg/Cnj3dbESRs9GZsySdvXshK8v1f1u0SOz3fvlltynsokWJ/b4SKDpzFjmdGTOgd+/EBzO4C5ANG2q9DTk7hbMknWnT4IYb/Hzv1FTo0EFjnuXs1NaQpPLpp25sc2mpv11KliyB2293u64ksuctgaG2hsjJpk93Cxz53D6qRw84eBDWrPFXgwSfwlmSyrRpbmlQn4xxNUyb5rcOCTa1NSRpfPwxZGfD9u3gey/hlStd3/vDD9XaSEJqa4gc76WX4Lrr/AczuMkoqalaa0Mqp3CWpBGElkYFY+DWW+HVV31XIkGlcJakUDE6Y/Bg35V8adgw+POf3TofIidTOEtS+Mc/3K4kder4ruRLublw9CisXeu7EgkihbMkhb//HYYP913FiYxxNRUU+K5EgkjhLJG3d69by2LoUN+VnGrECLfehsjJFM4SeXPmuLU0GjXyXcmp+vVzw+m0O7ecTOEskVdQELyWRoXUVLj6atd2ETmewlki7cgRmDkzuOEMrrWhvrOcTOEskfbGG9C2LaSn+66kckOHujr37PFdiQSJwlkiLcgtjQqNGkHfvlBY6LsSCZLQhXNhYSHZ2dlkZWUxbty4Uz6/Z88ehg8fTufOnbnssst4+umnE1+kBMbGjcEPZ4Drr4dZs3xXIUESqoWPysrKyMrKYt68ebRq1Ypu3boxdepUsrOzjx3zyCOPsGfPHh555BF27dpFhw4d2LFjB7Vr1z7hsbTwUfRt3Ah9+sC2bcFfXOiDD9zIjdLS4Ncq1Ra9hY+Ki4vJzMwkIyOD1NRU8vPzKTjpSooxhr179wKwd+9eLrzwwlOCWZLD7NluunYYwu7ii92CTG+/7bsSCYpQhXNpaSmtW7c+dj89PZ3SkwaIjh49mnXr1tGqVStyc3N5/PHHE12mBMTs2W5h/bAYMsTVLAIhC+dYzJ49my5durBt2zZWrlzJqFGj2Ldvn++yJMG++AIWLICrrvJdSeyGDlU4y5dC9Xo/LS2NkpKSY/e3bt1KWlraCcdMmjSJBx54AID27dtz0UUXsX79ei6//PJTHm/s2LHH3s/LyyMvL69G6pbEW7zYtQqaNfNdSez694fvfhf274cGDXxXI76FKpy7devGBx98wEcffUTLli2ZOnUqU6ZMOeGYjIwMXn31Vfr06cOOHTt47733aNeu3Wkf7/hwlmgJW0sDoGFD+NrXYOFCt5yoJLdQtTVSUlKYMGECgwcPpmPHjuTn55OTk8PEiRN58sknAXjwwQd588036dSpE1dddRXjx4+nSZMmniuXRAtjOIP6zvKlUA2liycNpYuuTz6BzEz3NjXVdzVVs2IF3HQTbNjguxKpQdEbSicSi7lzIS8vfMEMbm/Bf/0LNm/2XYn4pnCWyAlrSwOgVi03wkStDVE4S6RY69ZvDms4g/rO4iicJVLWrHEbuVYyQCcUBg+G+fPdWG1JXgpniZSwnzUDtGjh/rgsXeq7EvFJ4SyREuZ+8/HU2hCFs0TG/v3ubDMKEz0VzqJwlshYuNDNsGvY0Hcl1de7txvrvGuX70rEF4WzREZUWhoAderAlVfCq6/6rkR8UThLZGzeHJ1wBvj612HJEt9ViC+avi2RsH07dOzopmynpPiuJj7WrYNrroFNm3xXInGm6duSPIqKXBsgKsEMkJMDBw9qKneyUjhLJBQVufWQo8QY9zMVFfmuRHxQOEskRDGcwf1M8+f7rkJ8UDhL6JWUwJ49ruccNQMGuD88ujySfBTOEnpFRW7iSa0IPpvbt3ftjfff912JJFoEn86SbIqK3BlmFBnz5dmzJBeFs4Sata4nG8V+cwX1nZOTwllCbeNGOHIEsrJ8V1JzKkZsqO+cXBTOEmoVLQ0T07D+cMrIcOuFrF3ruxJJJIWzhFrUWxoVNN45+SicJbSsje745pMNGKC+c7JROEtorV8PdevCRRf5rqTm9e/vlkQ9etR3JZIoCmcJrYqz5ij3myu0bOm2r1q92nclkigKZwmtZGlpVFDfObkonCWUysqSL5zVd04uCmcJpXfegQsugNatfVeSOHl5sGgRfPGF70okERTOEkpRnrJdmaZNoW1beOst35VIIiicJZSSZXzzydR3Th4KZwmdo0fhtdfcy/xko75z8lA4S+isWgWtWsFXv+q7ksTr189t+nrokO9KpKYpnCV0krWlAfCVr7i9Epcv912J1DSFs4ROsg2hO9kll6i1kQwUzhIqX3wBb7yRnP3mCnl5uiiYDBTOEipvvQWDBsGFF/quxJ++faG4GD7/3HclUpMUzhIqCxYk18ST02nUyLU2iot9VyI1KXThXFhYSHZ2NllZWYwbN+60xyxYsIAuXbpw6aWX0j+Zm5MRVLGZa7LLy3N/qCS6jK3e3jcJ3TinrKyMrKws5s2bR6tWrejWrRtTp04lOzv72DG7d++md+/ezJkzh7S0NHbt2kXTpk1PeSxjDNX82SXBvvgCmjSBjz5yb5PZzJnw6KO6MBhSMa2jGKoz5+LiYjIzM8nIyCA1NZX8/HwKCgpOOOaFF17ghhtuIC0tDeC0wSzhtHw5tG+vYAb1nZNBqMK5tLSU1sc1HNPT0yktLT3hmPfee4/PPvuM/v37061bNyZPnpzoMqWGLFiglkaFir7z0qW+K5GaUtt3AfF25MgRVqxYwfz589m/fz+9evWiV69eXHzxxb5Lk2oqKoJRo3xXERz9+7s/WFde6bsSqQmhCue0tDRKSkqO3d+6deux9kWF9PR0mjZtSr169ahXrx79+vVj9erVpw3nsWPHHns/Ly+PPJ2WBdbhw7B4MUyd6ruS4MjLg/HjYcwY35VITQjVBcGjR4/SoUMH5s2bR8uWLenevTtTpkwhJyfn2DHr16/nnnvuobCwkEOHDtGjRw+mTZvGJZdccsJj6YJguLz5pjtrXrnSdyXBsWePW2Nk1y6oV893NVIFMV0QDNWZc0pKChMmTGDw4MGUlZVxxx13kJOTw8SJEzHGMHLkSLKzsxkyZAidOnUiJSWFkSNHnhLMEj7qN5+qUSPo2NH1ndXaiJ5QnTnHk86cw2XwYBg9GoYP911JsNx3H5x3nlobIRO9oXSSnCr6zVdc4buS4NFklOhSOEvgLVsGmZluz0A5UZ8+7t9H452jR+Esgad+c+Uq+s5LlviuROJN4SyBp3A+M7U2oknhLIF26JA7K+zXz3clwVUxGUWiReEsgbZsGWRlue2Z5PT69HHrjqjvHC0KZwk0tTTOrmFDuPRS9Z2jRuEsgaZwjo36ztGjcJbAOnTIzX7T+OazGzRIO6NEjcJZAqu4GDp0UL85Fr16weuvw4EDviuReFE4S2CppRG7Bg2gSxdYtMh3JRIvCmcJrI8+ci/XJTYDBmjbqihROEsgHTwI06ZB796+KwkPhXO0KJwlkN58Ey67zE1Pltj07Anr18O//uW7EokHhbME0vz57kxQYlenjrswuHCh70okHhTOEkjz5sHAgb6rCB+1NqJD4SyBs3s3rF3rzgKlagYMcH/YJPwUzhI4Cxe6/qn2xau6rl2htBR27PBdiVSXwlkCR/3mc5eS4vYTLCryXYlUl8JZAkf95upRayMaFM4SKDt2wNat8LWv+a4kvHRRMBoUzhIo8+e7l+UpKb4rCa+OHWHfPti82XclUh0KZwmUefPUb64uY3T2HAUKZwmU+fPVb44HhXP4KZwlMDZtcmtqXHKJ70rCb+BAF87W+q5EzpXCWQKjoqVhjO9Kwu+ii9x07g0bfFci50rhLIGhfnP8VPSdNaQuvBTOEgjWqt8cb+o7h5vCWQJh7Vo4/3xo29Z3JdExYIDbTaaszHclci4UzhIImhUYf61aQfPmsGqV70rkXCicJRDUb64Z/ftrfeewUjiLd0eOwGuvKZxrwuDBMGuW7yrkXCicxbvly6FNG/cSXOKrf39YvBgOHPBdiVSVwlm8mzMHrrnGdxXR1LixW+NZrY3wUTiLd7Nm6WJgTRo6FAoLfVchVWVs9eZ3hnZyqDGGav7sEgeffgrt2sHOnVC3ru9qomnlSsjP12zBAIlpDmzozpwLCwvJzs4mKyuLcePGVXrcsmXLSE1NZfr06QmsTqpqzhy3RKiCuebk5rp9GTdu9F2JVEWowrmsrIzRo0cze/Zs1q5dy5QpU1i/fv1pj7v//vsZMmSIhyqlKmbNgquv9l1FtNWq5UZtzJ7tuxKpilCFc3FxMZmZmWRkZJCamkp+fj4FBQWnHPfEE09w44030lyX/wOtrMwFhsK55g0dqnAOm1CFc2lpKa1btz52Pz09ndLS0hOO2bZtGy+//DJ33XWXesoBt3IlNGmiKduJcNVVbtPXw4d9VyKxClU4x+LHP/7xCb1oBXRwqaWROM2aQYcO8OabviuRWNX2XUBVpKWlUVJScuz+1q1bSUtLO+GY5cuXk5+fj7WWXbt2MWvWLFJTUxk+fPgpjzd27Nhj7+fl5ZGXl1dTpctpzJoFY8b4riJ5VAyp09M8HEI1lO7o0aN06NCBefPm0bJlS7p3786UKVPIyck57fG333471113Hddff/0pn9NQOr8++8y1M3buhHr1fFeTHN58E+6+WwshBUBMQ+lCdeackpLChAkTGDx4MGVlZdxxxx3k5OQwceJEjDGMHDnyhOONttQIrLlzoV8/BXMide8OJSWwfTu0bOm7GjmbUJ05x5POnP267Tbo1g1GjfJdSXL55jfh2mvh1lt9V5LUojkJRcKvrMz1PnUxMPE0lTs8FM6ScKtWuQV52rXzXUnyGTLEtZSOHvVdiZyNwlkSTkPo/ElPd/3m5ct9VyJno3CWhFM4+6XZguGgcJaE+uc/Yc0at9iR+KG+czgonCWh5s6FK67QEDqf+vaFPXvcGHMJLoWzJJRaGv7VrQsdO8Lf/+67EjkThbMkjIbQBcc3vgEzZviuQs5E4SwJs3q1W3ynfXvflciwYfD66669IcGkcJaEmTHDzQoU/xo1cr3nmTN9VyKVUThLwkyfDqdZg0o8uf56tTaCTGtrSEJs2AD9+8PWrW7bJPFv507IyoKPP9bomQTT2hoSHNOnu4tQCubgaN4cOnWCefN8VyKno18VSYjp0+GGG3xXISfTqI3gUltDalxJCXTt6l4+1w7VCuLRt3mzu0i7fbv+bxJIbQ0JhunTYfhw/fIHUdu2bjGkN97wXYmcTOEsNU4tjWBTayOY1NaQGrVjh5t4ohEBwfX22253lM2bQTu7JYTaGuJfQYGbrq1gDq5LL4U6dWDlSt+VyPEUzlKj/vY3TTwJOmPU2ggitTWkxvzzn5CRAdu2wfnn+65GzmTxYrjzTnjnHd+VJAW1NcSvV16BAQMUzGHQowd89hm8957vSqSCwllqjFoa4VGrFowYodZGkCicpUbs3g1797pRABIO+fka7xwkCmepES++CI0bQ5MmviuRWPXt60ZsrFnjuxIBhbPUkGeegVtv9V2FVEVKivs/e/pp35UIaLSG7zIi6cMPoVcvtzxonTq+q5GqeP99dwa9dSukpvquJrI0WkP8ePZZuOkmBXMYZWa6NZ61Q4p/CmeJq7IyF85qaYTXbbfBpEm+qxCFs8TV66+7cc1duviuRM7Vt74FCxa4nVLEH4WzxFXFhUAtoBNeDRu6JV6ff953JclNFwQlbvbvd2sDr1sHLVv6rkaqo6gI7r0XVq/WH9oaoAuCklgzZrhRGgrm8LvySjeJSCvV+aNwlrjR2OboqFVLY559U1tD4mLLFujcGUpLtXZzVGzaBN27uzHPdev6riZSotnWKCwsJDs7m6ysLMaNG3fK51944QVyc3PJzc2lb9++vP322x6qTD7PPQc33qhgjpKLLnIL8b/yiu9KklOowrmsrIzRo0cze/Zs1q5dy5QpU1i/fv0Jx7Rr147XXnuN1atX8+CDD3LnnXd6qjZ5WKuWRlRpzLM/oQrn4uJiMjMzycjIIDU1lfz8fAoKCk44pmfPnjRu3PjY+6WlpT5KTSqvvQY5Oe5ioETLjTe6leq2b/ddSfIJVTiXlpbSunXrY/fT09PPGL5PPfUUV199dSJKS2qPPw5XXaUhV1HUoIHbwuq553xXknxq+y6gphQVFTFp0iQWLVrku5RI27TJnTk/+6zvSqSm3H47/P73rn2lP8CJE6pwTktLo6Sk5Nj9rVu3kpaWdspxa9asYeTIkRQWFnLBBRdU+nhjx4499n5eXh55eXnxLDcpTJjgfnm1FVV09e0L99wDs2bBsGG+q0keoRpKd/ToUTp06MC8efNo2bIl3bt3Z8qUKeTk5Bw7pqSkhIEDBzJ58mR69uxZ6WNpKF317d0LbdvCihVuI1eJrhdegCefdGtuSLVFbyhdSkoKEyZMYPDgwXTs2JH8/HxycnKYOHEiTz75JAAPP/wwn332GXfffTddunShe/funquOrmeegf79FczJ4JvfhM2bYelS35Ukj1CdOceTzpyrp6wMsrPhL39xL3sl+v7wB3d94aWXfFcSetE7c5bgmDULGjWCPn18VyKJcscdsHCh2y1Fap7CWc7JY4+5Vct09T55NGgAd90F//3fvitJDgpnqbLVq+HQIbcouySX0aNh2jTYscN3JdGncJYqGzPGTUzQYjjJp3lztz/kE0/4riT6dEFQqqS4GG64wfUdtchRcvrgAzdVf9MmjW8/R7ogKPH34IPupmBOXhdf7IZQPvWU70qiTeEsMVu4ED78EL7/fd+ViG8//znMnw8HDviuJLoUzhITa+GXv4SxYyE11Xc14tvll7tXT48+6ruS6FLPWWIyaxb87GewZg2kpPiuRoJg82b42tdg1So4brFIOTv1nCU+rHV95l//WsEsX2rbFu6+G+6/33cl0aRwlrOaPt29vf56v3VI8Nx/v5vS/cYbviuJHoWznNHhw26h9Ycf1mxAOVWDBvBf/+Vmi5aV+a4mWhTOckbjx7uA1oYyUpnvfAfq1HGrFEr86IKgVGrDBrew0YoV0KaN72okyJYtgxEjYP16tyCWnFFMr0EVznJaZWUwYICbpn3vvb6rkTC4/XY3vXvcON+VBJ7C+UwUzmf21FNu54vFizVCQ2KzfTtcdpl7zmRm+q4m0BTOZ6JwrtzHH0OnTjB3LuTm+q5GwuSJJ9z6K888A7V0RasyGucs5+bee93C6gpmqaq77oKNG7XmczyEavdtqXlTprjRGb/6le9KJIxq13abwXbrBldeCdrC89yprSHHrF0LeXmundG5s+9qJMz+9je3ONLKlRq9cRrqOZ+JwvlEu3e7s50HH4RbbvFdjUTBv/0b7N3rJjFpAtMJFM5nonD+UlmZm5qdlgb/8z++q5GoOHDAtTXuuw9uvtl3NYESUzir5yyMG+f2hPvrX31XIlFy3nluXZZ+/aBZMxg61HdF4aLRGkmuoACefx5eeslNwRWJp6wsF9C33AJLl/quJlwUzkmsoABGjnRjUtPSfFcjUdW7Nzz9tJve/e67vqsJD4Vzkpo+3QXzzJluwXSRmjRsGPzud661sWWL72rCQT3nJPTSSzB6NBQWQpcuvquRZHHzzfDJJ26Fw7lzoWVL3xUFm8I5yUyb5mYAzp6tGYCSeD/9qbu20auXa6vpOVg5tTWSyHPPwY9/DHPm6JdC/Bk92o0QGjQIZszwXU1w6cw5CezdC/fc4xakKSqC7GzfFUmy+/a3oX17tyTtu+/CAw9oosrJdOYccUuXur5yaqpbEF3BLEFx+eXu+fnyy243lX37fFcULArniDp6FH77Wxg+3L2E/NOf3H5vIkHSqhUsXAgZGW6Z2lmzfFcUHJq+HUFr18JPfgJHjsCzz0J6uu+KRM5u9mwYNcq90nvssUiPvdd6zsnm/ffhe9+D/v3hppvccCUFs4TFkCHw9tuQk+NWRXziCdizx3dV/iicI2DjRvjBD9zwpOxs+OADt5+btpeSsKlfH379a1i0CJYvh4sugn//dygp8V1Z4imcQ+rAAbcmxuDBbt2Cli3dmfODD2r9XAm/Dh3csgIrV7pRHF26uFeDS5ZARLuRpwhdOBcWFpKdnU1WVhbjKtnm90c/+hGZmZl07tyZVatWJbjCmrN/vxujfMcdrh/33HPw/e+79sXDD8MFF/iuUCS+2rSBRx+FTZvc8qPjxkG7du6aysKF7sJ3ZFlrz/lWVFRkE+no0aO2ffv2dvPmzfbw4cM2NzfXvvvuuyccM3PmTDts2DBrrbVLliyxPXr0OO1juR892Pbvt3buXGt/+Utre/e2tkEDawcOtPZ3v7P2xReLfJdXLYl+7sSb6vejrMzaNWusve22Ituli7VNm1r7ve9Z+/vfW7tokfudCTogz8aQr9U6c16wYEFc/kDEqri4mMzMTDIyMkhNTSU/P5+CgoITjikoKOCW8q08evTowe7du9mxY0dC66yqvXtdf+2551xb4pvfdFvMDxoEY8a4Yx56CHbuhFdfhZ/9DN55Z4HXmqsr0c+deFP9fhjjfjcyMhawYgW89Zb7PfnwQ3c23ayZa4GMHAmPPw6vvALr1rk2YIDkxXJQqGYIlpaW0rp162P309PTKS4uPuMxaWlplJaW0qJFixqtzVo4dAg+/9wNpt+7190q3v/Xv+Djj13A7tjhbjt3ulbEsmVu3dvsbNdru+GGL9+vX79GyxYJtTZt4NZb3Q3c7+Dq1a5XvXq1W9xr40b46CP3uzZgABw8CM2bQ4sWbnx1nTrQuLG7feUrbpOABg3c2/POc5vW+pi9mJBwnj0bJkw49eNt2px6FbZ161M/Zq37x9m+3a1qde217uNbt7qxvNdc8+Vxy5e7q7u5ue4/ZOVKN5e/UaMvLyQ0b+7eDhzoPmatC8F9+9z7ZWXu1qwZbNvmvseRI66/deSIO+bgQfdEqLh98YX7T+7Xz/2lbtjwy9v557uftX59d+EuN9c9MVq0cLV89atQK3Tdf5HgqVvX9aZP3vW7rMz9Lm/Z4t7u3OluJSXuQvru3e7WrJkL9f373dl2167w+uvucev6MGrCAAAEnElEQVTWdSdR27a5Gbe1a7u3F1/sHiclxd3q13d5kJLifvcPHnT5VXGLVbUmoRhjkuS6qYhI/FhrzxrT1Z0hmFDGmBRgAzAQ2A4UAzdZa9897phhwChr7TXGmJ7AY9banl4KFhE5R6HqOVtrjxpjRgNzcMMA/2ytfdcY80P3afuktXamMWaYMeYDYD9wu8+aRUTORajOnEVEkkW1LkMZY240xrxjjDlqjOkar6JqmjFmqDFmvTHmPWPMfb7rqQpjzJ+NMTuMMWt813IujDHpxpj5xpi1xpi3jTE/8l1TrIwxdY0xS40xK8trH+O7pnNhjKlljFlhjPm771qqyhiz2Rizuvz/oPjsXxEsxpjGxpgXjTHvlv8O9Kjs2OqOEXgb+AawsJqPkzDGmFrABGAI0BG4yRgTplWOJ+FqD6sjwE+ttR2BXsCosPz7W2sPAf2ttV2AzsDVxpjuZ/myILoXWOe7iHNUhpvE0cVaG8Z/+8eBmdbaHCAXqHQ/8mqFs7V2g7X2fWJcAi8gugPvW2s/stZ+AUwFRniuKWbW2kXAP33Xca6stR9ba1eVv78P9+QMzeKQ1tqK6Qx1cddsQtUXNMakA8OAp3zXco4MIVx2AsAY0wi4wlo7CcBae8RaW+m6e6H8IaspDTh+c/athCgcosQY0xZ3BrrUbyWxK28JrAQ+BuZaa5f5rqmK/h/wH4Tsj8pxLDDXGLPMGHOn72Kq6CJglzFmUnlb6UljTKXTzM4azsaYucaYNcfd3i5/e11cy5akYow5H3gJuLf8DDoUrLVl5W2NdKCHMeYS3zXFyhhzDbCj/JWLIVyveCv0sdZ2xZ39jzLG9PVdUBXUBroC/1P+MxwA7j/TwWdkrb0qfrUFQinQ5rj76eUfkwQxxtTGBfNka23B2Y4PImvtHmNMETCU8PRv+wDDy+cC1AcaGmOetdbe4rmumFlrt5e//cQYMwPXplzkt6qYbQW2WGuXl99/Cah0QEI82xph+Su8DLjYGJNhjKkD5ANhu2od1rOeCn8B1llrH/ddSFUYY5oaYxqXv18fuApY77eq2Flrf2GtbWOtbYd73s8PUzAbY84rf8WFMaYBMBh4x29VsbPW7gC2GGOyyj80kDP8Ya/uULqvG2O2AD2BV4wxgd+e0Vp7FKiYyLIWmHr8DMOgM8a8ALwJZBljSowxoZpkY4zpA3wXGFA+HGqFMWao77pi1BIoMsaswvXJZ1trZ3quKZm0ABaV9/yXAP+w1s7xXFNV/Qh4vvw5lAv8Z2UHahKKiEgAJeNoDRGRwFM4i4gEkMJZRCSAFM4iIgGkcBYRCSCFs4hIACmcRUQCSOEsIhJACmcRkQQwxlxevlFAHWNMg/KNSipdOEszBEVEEsQY82vcolP1cYsgjav0WIWziEhiGGNScYuvHQR62zMEsNoaIiKJ0xQ4H2gI1DvTgTpzFhFJEGNMATAFtytKK2vtPZUde9bF9kVEpPqMMTcDh621U8s3mn7DGJNnrV1w2uN15iwiEjzqOYuIBJDCWUQkgBTOIiIBpHAWEQkghbOISAApnEVEAkjhLCISQApnEZEA+v90FqdU18lP4wAAAABJRU5ErkJggg=="
     },
     "execution_count": 12,
     "metadata": {
     },
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<sympy.plotting.plot.Plot at 0xe887d1dac8>"
      ]
     },
     "execution_count": 12,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%matplotlib -- inline\n",
    "from sympy.plotting import *\n",
    "plot(sp.exp(-(x-3)**2),(x,-1,6))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> תרגיל 4 </div>\n",
    "<div dir=\"RTL\">  חשבו את הניגזרת השנייה של פונקציית \"הפעמון\"\n",
    "    ושרטטו גרף שלה (הניחו כי :$\\sigma=3.0$ ו- $\\mu=1.5$ ) <br>\n",
    "    הערה: חשבו את הנגזרת ולאחר מכן הגדירו את ביטוי הניגזרת מחדש כאשר אתם מציבים ערכים לפרמטרים: $\\mu,\\sigma$. </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\">הפונקציות simplify, subs,expand,evalf </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$a^{3} + a^{2} b - a b^{2} - b^{3}$$"
      ]
     },
     "execution_count": 13,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a,b,c,d=sp.symbols('a b c d')\n",
    "expr=(a-b)*(a+b)**2\n",
    "sp.expand(expr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$a^{3} + a^{2} b - a b^{2} - b^{3}$$"
      ]
     },
     "execution_count": 14,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr.expand()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\left(- \\frac{c d}{2} + 3\\right) \\left(\\frac{c d}{2} + 3\\right)^{2}$$"
      ]
     },
     "execution_count": 15,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_expr=expr.subs([(a,3),(b,d*c/2)])\n",
    "new_expr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\frac{1}{8} \\left(- c d + 6\\right) \\left(c d + 6\\right)^{2}$$"
      ]
     },
     "execution_count": 16,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.simplify(new_expr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$-26.136$$"
      ]
     },
     "execution_count": 17,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_expr.subs([(c,2.4),(d,3)]).evalf()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\">תרגיל 5 </div>\n",
    "<div dir=\"RTL\"> בעזרת הפונקציה help בדקו מה פעולת הפונקציה simplify.<br>\n",
    "\n",
    "\n",
    "\n",
    "מה עושה כל אחת מהפונקציות subs, evalf ו- expand</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": true
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\">תרגיל 6 </div>\n",
    "<div dir=\"RTL\"> הפעילו את הפונקציה simplify על הניגזרת השלישית של פונקציית הפעמון </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> תרגיל 7 <div/>\n",
    "<div dir=\"RTL\">פשטו את הביטוי : $ (x+1)^2 \\over {1-x^2}$ (הפונקציה simplify)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\">תרגיל 8</div>\n",
    "<div dir=\"RTL\"> הפעילו על הביטוי הקודם את הפונקציה expand."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> תרגיל 9 </div>\n",
    "<div dir=\"RTL\"> הביטוי שלמטה הוא נוסחת הרון לחישוב שטח משולש שצלעותיו הן a,b ו-s. c הוא חצי היקף המשולש. השתמשו בפונקציה subs וחשבו את שטח המשולש אם נתון ש: a=6, b=7, c=9 </div>\n",
    "<div dir=\"RTL\"> קודם הציבו במקום s את מחצית סכום הצלעות ולאחר מכן הציבו את הערכים.</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
    "a,b,c,s=sp.symbols('a,b,c,s')\n",
    "area=sp.sqrt(s*(s-a)*(s-b)*(s-c))\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> בדיקת שוויון </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 20,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x,y=sp.symbols('x y')\n",
    "a=(x-y)**2\n",
    "b=x**2-2*x*y+y**2\n",
    "a==b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$0$$"
      ]
     },
     "execution_count": 21,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.simplify(a-b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> יצירת משוואה </div>\n",
    "<div dir=\"RTL\"> יוצרים משוואה באמצעות הפונקציה Eq</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$y = 4 x^{2} - x + 3$$"
      ]
     },
     "execution_count": 22,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "e=sp.Eq(y,4*x**2-x+3)\n",
    "e"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$y$$"
      ]
     },
     "execution_count": 23,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "e.lhs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$4 x^{2} - x + 3$$"
      ]
     },
     "execution_count": 24,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "e.rhs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\left [ - \\frac{1}{8} \\sqrt{16 y - 47} + \\frac{1}{8}, \\quad \\frac{1}{8} \\sqrt{16 y - 47} + \\frac{1}{8}\\right ]$$"
      ]
     },
     "execution_count": 25,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sp.solve(e,x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> תרגיל 10 </div>\n",
    "<div dir=\"RTL\">כתבו  פונקציה המקבלת שני ביטווים. הפונקציה צריכה tupl המכיל שני ערכים בוליאניים. הראשון מציין האם הביטויים זהים והשני האם הביטויים שווים מתמטית. </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
    "def equality_exercise(a,b):\n",
    "    \"\"\"Return a tuple of tow boolean. the first is True if a=b symbolicaly, \n",
    "    the second is True if a==b mathematically. \n",
    "    Examples\n",
    "    ========\n",
    "    >>> x=symbols('x')\n",
    "    >>> equality_exercise(x,2)\n",
    "    (False,False)\n",
    "    >>> equality_exercise((x+1)**2,x**2+2*x+1)\n",
    "    (False,True)\n",
    "    >>> equality_exercise(4*x,4*x)\n",
    "    (True,True)\n",
    "    \"\"\"\n",
    "    return a==b,sp.simplify(a-b)==0\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(False, True)"
      ]
     },
     "execution_count": 27,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr1=(x-y)**2\n",
    "expr2=x**2-2*x*y+y**2\n",
    "equality_exercise(expr1,expr2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> דוגמא </div>\n",
    "<div dir=\"RTL\"> קיבול חום סגול של חומר מוגדר ככמות האנרגיה שצריך לספק לכמות חומר שגודלה יחידת מסה אחת כדי לחמם אותה ב- $ 1^0C $. קיבול החום הסגולי של מים הוא\n",
    " $ 4.2{ J\\over {gr\\cdot 1^0C}} $ (האות J מציינת את יחידת האנרגיה ג'ול)  הספק של גוף חימום שווה לכמות האנרגיה שפולט גוף החימום ביחידת זמן. יחידת ההספק היא ווט (W) והיא שווה לכמות אנרגיה של 1J בשנייה (s). בהמשך דוגמא לחישוב הזמן הדרוש לחימום דוד מים המכיל 150 ליטר מים בטמפרטורה של $ 23^0 C $ לטמפרטורה של  $ 60^0C $בעזרת גוף חימום שהספקו 2000W. \n",
    " </div>\n",
    "<div dir=\"RTL\"><B> הערה: </B> </div>\n",
    " <div dir=\"RTL\"> כאשר מצמידים גוף בטמפרטורה גבוהה לגוף בטמפרטורה נמוכה יותר עוברת אנרגיה מהגוף החם לקר עד שהטמפרטורות משתוות. כמות האנרגיה העוברת מהגוף החם לקר מכונה חום. <br></div>\n",
    "\n",
    "Q - כמות חום\n",
    "\n",
    "T1- טמפרטורה התחלתית\n",
    "\n",
    "T2- טמפרטורה סופית\n",
    "\n",
    "m - מסת המים\n",
    "\n",
    "c -קיבול חום סגולי של מים\n",
    "\n",
    "P - הספק גוף החימום\n",
    "\n",
    "##<div dir=\"RTL\"> חישוב כמות החום הדרושה לחימום המים:</div>\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [
   ],
   "source": [
    "c=4.2# J/gr-1C\n",
    "m=150*1000 #gr\n",
    "T1=23 #C\n",
    "T2=60 #C\n",
    "P=2000 #w\n",
    "Q=c*m*(T2-T1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=RTL>חישוב הזמן:</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "11655.0 s\n"
     ]
    }
   ],
   "source": [
    "t=Q/P\n",
    "print( t, \"s\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "<div dir=\"RTL\"> כפי שניתן לראות במקרה זה אין צורך להשתמש ב-Sympy לפתרון התרגיל. </div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "\n",
    "\n",
    "# <div dir=\"RTL\">  השימוש ב- Sympy הוא הדרך הפשוטה לפתרון בעיות מסובכות והדרך המסובכת לפתרון בעיות פשוטות </div>\n",
    "\n",
    "\n",
    "\n",
    "## <div dir=\"RTL\"> תרגיל 11 </div>\n",
    "\n",
    "<div dir=\"RTL\">\tנתון גוף שמסתו m1 בטמפרטורה T1 וקיבול חום C1.<BR>\n",
    "מצמידים אותו לגוף שמסתו m2, הטמפרטורה שלו T2 וקיבול החום שלו C2. פתחו בעזרת Sympy<BR> ביטוי לטמפרטורה הסופית של שני הגופים ( הניחו כי כמות החום שפלט האחד שווה לכמות החום שקלט השני).</div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> הפונקציה solve </div>\n",
    "\n",
    "<div dir=\"RTL\"> נתונה המשוואה: $$ x- {1\\over x}+b\\cdot x=7 $$ </br>\n",
    "\n",
    "\n",
    "\n",
    "<div dir=\"RTL\">נמצא לה פתרון סימבולי: </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Eq(b*x + x - 1/x, 7)\n"
     ]
    },
    {
     "data": {
      "text/latex": [
       "$$\\left [ \\frac{- \\sqrt{4 b + 53} + 7}{2 b + 2}, \\quad \\frac{\\sqrt{4 b + 53} + 7}{2 b + 2}\\right ]$$"
      ]
     },
     "execution_count": 33,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x,b=sp.symbols('x b')\n",
    "eq=sp.Eq(x-1/x+b*x,7)\n",
    "print(eq)\n",
    "ans=sp.solve(eq,x)\n",
    "ans"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\"> פיתרון נומרי עבור b=5 </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "-0.129 1.30\n"
     ]
    }
   ],
   "source": [
    "print( ans[0].subs(b,5).n(3), ans[1].subs(b,5).n(3))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "### <div dir=\"RTL\">יותר מנעלם אחד: </div>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\left [ \\left ( - \\frac{7}{3}, \\quad - \\frac{4}{3}\\right ), \\quad \\left ( - \\frac{5}{3}, \\quad - \\frac{7}{3}\\right ), \\quad \\left ( 0, \\quad 1\\right ), \\quad \\left ( 1, \\quad \\frac{1}{3}\\right )\\right ]$$"
      ]
     },
     "execution_count": 35,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x,y=sp.symbols('x,y')\n",
    "sp.solve([sp.Eq(3*(x-y)**2+x-2,y),sp.Eq(y*x+x/3+y,1)],[x,y])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> תרגיל 12 </div>\n",
    "<div dir=\"RTL\">חלקיק נע במהירות קצובה לאורך הקו הישר: $ y=m\\cdot x+n $ . בנקודה (a,b) דיסקה ברדיוס r.</div>\n",
    "<div dir=\"RTL\"> פתחו נוסחא באמצעותה ניתן לדעת האם החלקיק מתנגש בדיסקה ואם כן היכן.</div>\n",
    "<div dir=\"RTL\"> היכן נקודת ההתנגשות עבור הערכים הבאים: a=2,b=3,m=1,n=0.5, ו- r=5 </div>\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "# <div dir=\"RTL\"> מציאת נקודות קיצון של פונקציה </div>\n",
    "\n",
    "<div dir=\"RTL\"> בנקודת קיצון הניגזרת מתאפסת </div>\n",
    "\n",
    "## $$ f(x)=e^\\frac{-(x^2-ax+b)}{c} $$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAETCAYAAADqC8daAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl41NXZxvHvkUUCqIhIlLCIsgpICCq4YVwqskq1AoKiGAsWKVrrVmoVvahvxVorFRFrAUEREEWwEEDZVApGQRYRlErZIouiLCpbkvP+cRKMkECSWc5vZu7PdeWCmMnkJoTHM8/ZjLUWEREJlhN8BxARkaOpOIuIBJCKs4hIAKk4i4gEkIqziEgAqTiLiASQirOISACpOIuIBFB53wEkGIwxNYFLgFrAPuBT4GNrbZ7XYCIJymiHYGIzxlwBPARUBz4BdgCVgEbAOcAU4Glr7R5vIUUSkIpzgjPGPAX8w1q7qYiPlQc6A+WstW8U8/m1gXFAMpAH/NNaO7yIxw0HOgA/ALdZa5eH708hEn9UnCUkxpgzgDOstcuNMVWBpcB11tq1hR7TARhore1kjGkDPGutbespskhM0ISgAGCMGW+MOaXQ+2cZY+Ye7/OstdsKRsHW2u+BNUDKEQ+7Dje6xlr7IXCKMSY5bOFF4pCKsxT4APjQGNPRGPNrYA7w99I8gTHmLCAV+PCID6UAmwu9n83RBVxECtFqDQHAWjvKGLMamA98A7Sy1m4r6efntzSmAHfnj6BFJAShFmc1rOPE+PHjadiwIY899hgrV648Y/bs2VtXrFhBy5Ytj/u5OTk5tG/fng4dOnD33Xe/deTH+/fvzxVXXNG54P3GjRuzcOHCpUc+zhjDo48+evj99PR00tPTy/xnEgkoU6IHhTghqOIcJ7p168aLL75IzZo1AcjKyqJ///588sknx/3cPn36UKNGDf72t78V+fGZM2cyYsQIZsyYwZIlS7jnnntYsmTJUY8zxqAJakkAKs4SmoMHD1KxYsVjPmbRokW0a9eOFi1aYIzBGMMTTzzBxo0bMcbQr18/AAYOHMisWbOoUqUKY8aMIS0t7ajnUnGWBKHiLMc3dOhQBgwYQPXq1Yv8+Lx58/jxxx/p3LlzkR8PJxVnSRAlKs6aEExwLVq0oEuXLlSqVIm0tDROP/109u/fz7p161i+fDlXX301gwcP9h3TC2vhwAGoUAHKlfOdRhKNRs4J7pZbbmH8+PEMGzaMmjVrsnXrVpKSkmjatCnt2rUjKSkpalmCMHL+5BOYPBlmz4ZduyA7G0491b1dfTXceCNceimcoEWoUnZqa8jxnXvuubz77rt06NCB+fPnH/Xx4todkeCzOH/8MTz0EPz4I1x1FbRvD2lpULky7N8Pa9fCO+/Ayy9DvXpw//2ghSRSRirOcnzDhw9n5MiRrF+/npSUn/aFWGsxxrB+/fqoZfFRnHNyYMgQmD8f+vaFW291bYzi5OXB1Klw773QuTP8+c9QrVrU4kp8UHGWkvvNb37DyJEjvWaIdnHevt0V5NxcGDcOkkuxofyHH+Dxx+Hf/4YZM+CssyIWU+KPirPElmgW5y1bXPuib1944IGy95CHD4e//AXefhtatw5vRolbKs4SW6JVnDdtcv3iAQPgvvtCf77p093zvPEGtGgR+vNJ3NNSOpEj7d4NnTq50fKdd4bnObt2dROJHTvCokVQt254nlcSm4qzJIycHOjeHa64InyFuUDPnrB1K1x7LXzwAURxkYvEKbU1JDAi3da4915YvdpN4JWP0LBkyBBYtQqmTAFTohevkoBK9JOhpfSSEKZOhWXLYNKkyBVmgMGDXU/7+ecj9zUkMWjkLIERqZHztm2QmuoK9EUXhf3pj7JuHVx8sVs73bx55L+exByNnEWshYwM+PWvo1OYARo2hGHD4KabYN++6HxNiT8qzhLXXnrJbTZ55JHoft3bboNmzaCYI65FjkttDQmMcLc1tm6Fyy937YxmzcL2tCX2zTdw7rkwZ45rq4jkU1tDEtuDD8L11/spzAA1asDQoXDXXe5MDpHSUHGWuPTBB25C7uGH/ebIyIBDh9zZHSKlobaGBEa42ho5Oe6ci8GDoUePMAQL0ccfuxPs1qxx50JLwlNbQxLTK6+4lkL37r6TOOef71ZuPPec7yQSSzRylsAIx8j5+++hQQPIzIRWrcIULAx27ICmTWHpUh0vKho5SwL6+9/hyiuDVZgBataEgQPh0Ud9J5FYoZGzBEaoI+edO6FxY1iyxI2eg2bPHrdBZe5c7RxMcBo5S2J58km44YZgFmaAk092y/t8ryCR2KDiLHFh61Y3ERjtnYClNWAAHDgAH33kO4kEnYqzxIVnnnErIgrdURtIlSq5ZXVDh/pOIkGnnrMERll7zrt3w9lnuyNB69WLQLAw27cPzjkHZs/WtVYJSj1nSQyjRkGHDrFRmAGSkuB3v4MnnvCdRIJMI2cJjLKMnA8ccKPmmTOhZcsIBYuAvXtd7kWLoFEj32kkyjRylvg3YYJblhZLhRngpJPcgUjDhvlOIkGlkbMERmlHznl5rjD/4x9w1VURDBYhO3dC27bw/vtwxhm+00gUaeQs8W3GDNe/vfJK30nK5rTTXPYXX/SdRIJII2cJjNKOnNu1c62BIJw8V1affgrXXAMbNkDFir7TSJRo5Czxa/Fi2LzZ7QiMZc2buwORpkzxnUSCRsVZYtJTT8Hvfw/ly/tOErpBg1zfXKQwFWeJOf/9LyxfDn37+k4SHp07w7ZtkJXlO4kEiYqzxJwRI6BnT6hSxXeS8ChXzvXONXqWwjQhKIFRkgnBffugTh13cFD9+lEKFgXffec2paxZo2V1CUATghJ/Xn8dLrwwvgozuLsFu3d3W9FFQCNnCZCSjJwvvhgeegi6do1SqCjSsrqEoZGzxJcVK9zyuY4dfSeJDC2rk8JUnCVmjBoFd9wRH8vnijNoEAwf7juFBIGKs8SEvXth4kRXnONZ585wyinwySe+k4hvKs4SE157DS6/PPg3nYSqXDl3GNKYMb6TiG+aEJTAKG5C0Fpo3dodTn/ttR6CRdn//gcXXABbtrhrrSTuaEJQ4sPHH7t1wNdc4ztJdNSvD6mpMH267yTik4qzBN4LL0D//nBCAv203n47jB7tO4X4pLaGBEZRbY1du6BVK1iyBJKTPQXzYN8+qF3bTQzWres7jYSZ2hoSeRkZGSQnJ3PeeecV+fGFCxdSrVo10tLSSEtLY+jQoaV6/smTXb85kQozuEsEevSAl1/2nUR8UXGWkPTt25fZs2cf8zHt2rVj2bJlLFu2jIcffrhUz//yy3DrraEkjF233+5WbeTl+U4iPqg4S0guvfRSTj311GM+pqyts3Xr3PGgibBCoyitW7uLYBcu9J1EfFBxlohbvHgxqampdOrUic8++6zEnzduHPTqBRUqRDBcgBmjicFEFscbYSUIWrduzaZNm6hcuTKZmZl069aNL774otjHDxkyBHBrm198MZ3Zs9OjEzSgeveGRx91E6PVqvlOI9Gk1RoSso0bN9KlSxdWrlx53MfWr1+fpUuXUr169aM+Vni1xvz5cM897rCjRHfjjXDVVXDnnb6TSJhotYZEh7W22L7y9u3bD/8+KysLa22RhflIiTwReCS1NhKTRs4Skl69erFgwQJ27txJcnIyjz32GAcPHsQYQ79+/RgxYgQjR46kQoUKJCUl8cwzz9CmTZsin6tg5Pz99+62k7VrE28JXVFyc6FePcjMhBYtfKeRMCjRyFnFWQKjoDiPG+fWN//7374TBcfDD8P+/fDXv/pOImGgtobEJrU0jnbrrTBpEhw65DuJRIuKswTKpk2wfDl06eI7SbA0bOiOS333Xd9JJFpUnCVQxo93F53qqMyj9e4Nr7ziO4VEi3rOEhjGGBo2dD3ntm19pwmeHTugUSN3znPVqr7TSAjUc5bYYwwUs5gj4dWsCZdcAm+95TuJRIOKswTKrbe6Ai1F690bXn3VdwqJBrU1JBAOHIBKlQybNlnq1PGdJrh++MFNDH7+udaAxzC1NSR2ZGa6X1WYj61KFbeSZdIk30kk0lScJRAmTPCdIHbcfLNWbSQCtTXEuz173Ih5z56ib9+Wn8vJcVdYvfeeW70hMUdtDYkNU6fCFVf4ThE7ypeHnj01MRjvVJzFuwkT3KH6UnIFG1L0QiN+qTiLV9u3Q1YWdO7sO0lsOf98N4L+8EPfSSRSVJzFq8mT3eqDypV9J4ktxmg7d7xTcRavXn1VLY2y6t3b/c9NJ9XFJxVn8ebLL+F//4Orr/adJDadcw40aABz5vhOIpGg4izevPaaO4GuvK4ZLrM77oC5c32nkEjQOmfxwlo491x3N95FF7n/VviCVymZgpPqsrPd7kGJCVrnLMG1fLk7T0NHg4amZk13ip+u9Io/Ks7iRcHaZp1AF7qbbnItIokvKs4SdXl57lS1nj19J4kPv/wlzJ8Pu3b5TiLhpOIsUbdoEWzYAM2b+04SH045Ba66Ct5803cSCScVZ4m6115zL8UlfG66CSZO9J1CwkmrNSSqDh1yh8UvWQJnn/3zj2m1Rtn9+CPUqqVD+GOEVmtI8Myb54rykYVZQlO5sjuf5PXXfSeRcFFxlqhSSyNytGojvqitIVGzfz+ceSasXu1egh9JbY3QHDzovq9Ll0K9er7TyDGorSHBMnMmtGpVdGGW0FWsCDfcoInBeKHiLFEzcaJaGpHWs6eKc7xQW0OiYu9ed+/d+vVw2mlFP0ZtjdDl5rr7GOfNgyZNfKeRYqitIcExbRpcdlnxhVnCo1w56NFDE4PxQMVZokItjegpWLWhFyGxTcVZIm7nTnj/feja1XeSxHDBBdC0KSxb5juJhELFWSLujTegfXs46STfSRKDMe7cEk0MxjYVZ4k4tTSir+Csjbw830mkrFScJaK++gq2boVrr/WdJLE0bw7VqrkTACU2qThLRE2a5G47SUrynSTxaDt3bFNxlojSWRr+9OwJU6a4kwAl9qg4S8T897+wcSNceaXvJInp7LOhfn23IUVij4qzRMxrr0H37lC+vO8kiUutjdil7dsSEdZCs2bw0ktw8cUl+xxt3w6/r75yfw9bt0KlSr7TSD5t3xZ/Vq50t3NcdJHvJImtVi13EuDMmb6TSGmpOEtETJjgXlKbEo0RJJJ0v2BsUltDwi4vz01Evf02nHdeyT9PbY3I2LnTvYJZulS7NANCbQ3xY/FiqFoVWrTwnUTAnQTYuLE7GVBih4qzhN2ECdCrl1oaQdKrF7z6qu8UUhoqzhKSjIwMkpOTOS+/f5GT426A7tnzp8cMGjSIhg0bkpqayvLlyz0lTWxdu7pXNDt2+E4iJaXiLCHp27cvs2fPPvz+3Lmu33zOOe79zMxMvvzyS9atW8eoUaO48847PSVNbFWqQOfOMHmy7yRSUirOEpJLL72UU0899fD7BS2NAtOmTaNPnz4AtGnTht27d7N9+/ZoxxSgd2/39yOxQcVZwmbfPpg+3e0KLJCdnU2dOnUOv5+SkkJ2draHdHL11W5L/fr1vpNISag4S9jMmAFpaXDmmb6TSFEqVIAbb9R27lihUw8kbDIzf97SADdS3rx58+H3t2zZQkpKSrHPMWTIkMO/T09PJz09PcwpE1vv3nDHHTB4sFbTBJ2Ks4TMWktOjmXKFHj66Z9/rGvXrowYMYIePXqwZMkSqlWrRnJycrHPVbg4S/hddJFrP61YAampvtPIsag4S0h69erFggUL+PrrnVSoUJepUx/j4MGDGGPo168fHTt2ZObMmTRo0IAqVaowZswY35ETmjFuO/eECSrOQaft2xIW7drBffeFdsO2tm9Hx+rV7tqwjRvhBM06+aDt2xIdGzbAmjW6JzBWNGsG1avD++/7TiLHouIsIXvlFbd8rmJF30mkpG67DebM8Z1CjkVtDQmJtdCkCbz8srvINRRqa0TPli3QsiVkZ+sQfg/U1pDI+/hjd0Romza+k0hp1K7t1qS//bbvJFIcFWcJyfjxcPPNWjMbi/r0gXHjfKeQ4qitIWV26BCkpLjTzgoOOgqF2hrR9f33UKcOfP451KzpO01CUVtDImv2bGjYMDyFWaKvalXo0kXbuYNKxVnKbPx4uOUW3ykkFGptBJfaGlImu3dD3brwv/+5NbPhoLZG9OXmQr16MGsWNG/uO03CUFtDImfKFLjyyvAVZvGjXDk3oTt+vO8kciQVZymTV15RSyNe3HKL+/vMzfWdRApTcZZS27QJVq2CTp18J5FwaNbMncE9b57vJFKYirOU2qRJ8KtfwYkn+k4i4aKJweDRhKCUirXQuLH7hxzqdu0jaULQnx07oFEj2LwZTjrJd5q4pwlBCb9Fi9wkkrZrx5eaNeGyy+DNN30nkQIqzlIqo0dDRoa2a8ejO+7QSXVBoraGlNjevT9t9z3GTVNlpraGXwcOuL/f//wHGjTwnSauqa0h4TV5MqSnR6Ywi38nnujWPI8e7TuJgIqzlEJBS0PiV0YGjB0LOTm+k4iKs5TImjWwfj106OA7iURSs2Zw1lmQmek7iag4S4mMGePWwpbXfe1xLyMDXnrJdwrRhKAc16FDbqJo4UK3xjlSNCEYDAXnPH/2mds5KGGnCUEJj5kz3ex9JAuzBEfVqm4H6Msv+06S2FSc5bhGj4bbb/edQqIpIwP+9S+3I1T8UHGWY9q2Dd57D7p3951EoqlNG7e07r33fCdJXCrOckzjxsGdd7qXupI4jNHEoG+aEJRi5ea6+wHfeANat47819OEYLB8842ba9iwAapV850mrmhCUEKTmel2A0ajMEvw1KgB7dvrAlhfVJylWM8/DwMG+E4hPv3mNzBypCYGfVBxliJ9+SV89JEmAhPd5Ze7de6aGIw+FWcp0qhRcNttkJTkO4n4ZAwMHAjPPec7SeLRhKAcZf9+qFs3+kdHakIwmPbscedtrFoFKSm+08QFTQhK2bz+OqSl6UxfcU4+GXr1cq+mJHo0cpajXHQR/OEP0LVrdL+uRs7BtWYNXHklbNwIFSv6ThPzNHKW0lu2DL76Cjp18p1EgqRpUzj3XLfmXaJDxVl+ZuRI6N/fXeIqUpgmBqNLbQ05bNcuN/ETqTsCj0dtjWDLyYGzz4Zp06BVK99pYpraGlI6Eye6m050R6AUpXx5tyllxAjfSRKDRs4CuFFRw4YwYYKbEPRBI+fg+/praNTIbVKqXt13mpilkbOU3BtvQO3a/gqzxIbTT4cuXXRaXTSoOAvWwlNPwf33+04iseCee9wN3YcO+U4S31Schfnz4YcfoHNn30kkFqSlwRlnuDkKiRwVZ+Gpp+D3v4cT9NMgJfTggzBsmE6riyT9c0xwq1bBihVw882+k0gsueYatxZ+5kzfSeKXinOC++tf4be/hUqVfCeRWGIMPPCAGz1LZGgpXQLbvBlatnTLok491XcaLaWLNTk57nCsiROhbVvfaWKKltLJsT37LNx6azAKs8Se8uXdXMWTT/pOEp9UnBPU7t0werRbFhWqWbNm0aRJExo1asSTRfxLXbhwIdWqVSMtLY20tDSGDh0a+heVQLj9dli0CNau9Z0k/pT3HUD8GDUKOnaEevVCe568vDwGDhzI3LlzqVWrFhdccAHXXXcdTZo0+dnj2rVrx/Tp00P7YhI4VarAXXe5uQttTAkvjZwT0IEDrqURjk0nWVlZNGzYkHr16lGhQgV69uzJtGnTjnqcesnx66674M033VGzEj4qzglowgS34aRly9CfKzs7mzp16hx+v3bt2mRnZx/1uMWLF5OamkqnTp347LPPQv/CEhg1arilmDoQKbzU1kgw+/fDo4/C5MnR+5qtW7dm06ZNVK5cmczMTLp168YXX3wRvQAScfffD+efD4MG6VTDcFFxTjAvvODO4g3X0qeUlBQ2bdp0+P0tW7aQcsQtoFWrVj38+w4dOjBgwAC+/fZbqhdxrNmQIUMO/z49PZ309PTwBJWIqlMHbroJ/vxnGD7cd5r4oHXOCWTvXncs6Jw5cN554XnO3NxcGjduzNy5cznzzDO58MILee2112jatOnhx2zfvp3k/OFUVlYW3bt3Z8OGDUc9l9Y5x7YdO9x1VsuWhT7RHOdKtM5ZI+cE8uyz7pLOcBVmgHLlyvHcc89xzTXXkJeXR0ZGBk2bNmXUqFEYY+jXrx9Tpkxh5MiRVKhQgaSkJCZNmhS+ABIYNWvCgAEwZAiMGeM7TezTyDlBfPutOyR98WI3eg4ijZxj365d7uds4UI3ipYiaYeg/OSpp+D664NbmCU+VKsG990Hf/qT7ySxTyPnBLBtm7vWfsUKN3ETVBo5x4cff3SDgGnT3AoOOUqJRs4qzgngt7915yA884zvJMem4hw/Ro6Et96C2bN9JwkkFWeBjRvdzRVr1rgJmyBTcY4fBw9Ckybu/BathjyKes4Cjz3mZtCDXpglvlSsCI8/DoMH67aUstLIOY599hlcfjmsW+cmaoJOI+f4kpvrjgj4y190P+URNHJOZNbCvffC0KGxUZgl/pQr51YJDR/u2hxSOirOceqtt9xNJ7ff7juJJLJrr42NyeggUlsjDv3wg1s6N3YsXHGF7zQlp7ZGfFq/Hi68EJYu1bbufGprJKo//xkuuSS2CrPEr7PPhrvvdm9Scho5x5nPP3eFeeVKqFXLd5rS0cg5fh04AC1awNNPQ5cuvtN4p3XOicZaaN8eOnSA3/3Od5rSU3GOb++8A/36werVULmy7zReqa2RaN54A7ZuhYEDfScROdovfgFt2sATT/hOEhs0co4Te/a4cwxeegnatfOdpmw0co5/X33l1j6//77bQZig1NZIJP36QaVKsX0LhYpzYnj2WZg+Hd59F0yJylTcUVsjUbz9tuvnDR3qO4nI8d11F5x5Jowa5TtJsGnkHON27HAvEydPhssu850mNBo5J461a93P64IF0KyZ7zRRp5FzvLPWtTNuvTX2C7MkliZN4MknoWdP2LfPd5pg0sg5ho0e7XrMH34IJ57oO03oNHJOLNa6G7tPOw1GjPCdJqo0IRjP1q93y5Lmz4fmzX2nCQ8V58Szaxe0auXO3ujWzXeaqFFxjle5ue4o0BtuiM3NJsVRcU5Mixe7wvzxx8G+Ri2MVJzj1QMPwO7d7iqgE+Jo1kDFOXH93//BrFkwb547ajTOaUIwHo0dC2++6XZZxVNhlsT2wAPuaFHtHvyJRs4x5IMP4PrrYeFCaNrUd5rw08g5sX31lTu0a8yYuL93UCPneLJhA9x4I4wfH5+FWaRWLVeYe/SATz/1ncY/FecYsGePO2Zx8GB36pxIvEpPdys3OnZ0N/kkMrU1Ai43F667DmrXdhOA8XwWgdoaUuDpp906/g8+gFNP9Z0m7LRaIx7cfz8sW+ZmsitU8J0mslScpbB773XL6+bMcYd6xREV51g3YgRMmuQua61e3XeayFNxlsLy8qB3b3dz9+TJcbXETsU5lj39NDz/PMydC2ed5TtNdKg4y5EOHHA3+zRtCs89FzdtPa3WiFVDh7rjFBcuTJzCLFKUE0+EqVPdLsKnnnLncSQKjZwDxFr405/cD+O777ozbxOJRs5SnK+/diuV2rRxI+gYb3GorRFLrHW7pN55x72dfrrvRNGn4izHsmeP24R1yinw6qsxPUmotkasyM11BxjNn+/OFkjEwixyPCefDDNmuFVL7du7E+3imYqzZ99+C507w3ffucm/RFiVIVJWJ54IEyZAaqq7yDg723eiyFFx9mj5cndjdtOm7tbsU07xnUgk+E44Af7+d+jVC+68021UiUfqOXsyfrxbZP+Pf7irekQ9Zym9GTMgIwMGDoQ//CFmJgo1IRhE+/bBI4+4jSVTp8bPLSbhoOIsZZGd7TarnHACvPKKO0Ap4DQhGDTvveduyj5wAD76SIVZJBxSUtx8TXo6tG7tRtPxQCPnKNizBx56CKZPd2s0E+iutFLRyFlC9d577vTG00+Hv/0N6tf3nahIGjn7lpfnXmZdfz0cOuTOqFVhFomcdu3cBq7zz3dvjzwCP/7oO1XZaOQcAdZCZqaboKhcGf76V3fDgxybRs4STps3u1MdC7Z+33hjYM7m0IRgtFkLixbBH//otps+8YQ7izkgPxCBp+IskbBgAfzzn7BqlduF26OH9+N3VZyj5dAheP11d4PDoUNw991wyy3uwkopORVniRRr3Znow4bB+vVuGesdd0CVKl7iqDhH2hdfuN1KY8e6iYff/Q46dYqZtZaBo+Is0ZCV5Yr0hg1w6aXQpw+0ahXVV7gqzpHw1VfuAPxXX3XrK3v0cIvgW7TwnSz2qThLNK1fDy+/7DaEVa7sinSPHlCvXsS/tIpzOOTluWui5syBTz5xM8HdurlF7+npal2Ek4qz+FAwVzRunDt8rFIld8Fsx45w8cUR6U+rOJfFvn3uzIuPPoI1a1wvOTkZrrnGvaWnQ1KS75TBMmvWLO655x7y8vLIyMjgwQcfPOoxgwYNIjMzkypVqjB27FhSU1OPeoyKs/iWm+vuLZw5071t3Aht27pzpNu2hQsucKfjhahkDRRrbZnf5s+fb4OmpJny8qzdts3ahQutHTvW2n79rE1NtTYpydq0NGv797d24kRrN2+OXqZoClem3Nxce84559gNGzbYgwcP2pYtW9o1a9b87DEzZ860HTt2tNZau2TJEtumTZsin8v9OAZPPP/9hVM8Ztq2zdopU6y97z5rL73U2sqVrW3WzL3/zDPWzppl7caNrp6UFJBuS1BfQ3pRvmDBAtLT00N5irAryJSXBzt3wpYtbr3jli3u7eBBeP99+Pxz15Jo3Ni9dGneHPr2dUcRhvsQ7yB/n0KVlZVFw4YNqZffqOvZsyfTpk2jSZMmhx8zbdo0+vTpA0CbNm3YvXs327dvJzk5OeSvHw3x/PcXTvGYKTkZbrjBvYFbjbVyJaxeDR9+CG+/7V5h790Ll10GVatC3bqub123LtSp4876qFHjZy3QdGDB8b52YDqm1kJOjiueBw+68yf273e7e/btc78ePOgO2N67122J3rPH/f7AAVeAv/nGfaNeeMG99Ni5030EuFfQAAAF8ElEQVRzatf+6a1FC/jlL11RrlHD95869mVnZ1OnTp3D79euXZusrKxjPiYlJYXs7OyYKc4iBSpUcOd3tG7tJhAL7NrlVm99+SVs2gRr17p5qq+/dhOP330H1apBzZol/1ohFecxY9wEmbVu4qxWLRcsL8/1bgp+rVvXhc7JcW+5ue7XevXcH6KgIJcrBxUrurezznIH0Veu/NNbgwauIJ90kiu+J5/sDqc//XS3JKZGDXeF+p/+BKed5p5HRCTSqlWDCy90b0XJzXWDxe3b4bzzSvacIU0IGmM0eyMiUkrW2uNOCoa6WkMSnDGmHPA5cBWwFcgCbrLWrin0mI7AXdbaTsaYtsDfrbVtvQQWiRGB6TlLbLLW5hpjBgJzcKcc/stau8YY09992L5orZ1pjOlojPkv8APQ12dmkVigkbOISACF5TxnY8zvjTF5xphA3B1tjHncGLPCGPOJMWaWMeaMAGQaZoxZY4xZbox5wxgT+lL20DP9yhjzqTEm1xiT5jnLtcaYtcaYL4wxR+9i8cAY8y9jzHZjzErfWQCMMbWNMfOMMauNMauMMYN8ZwIwxpxojPkw/9/bKmPMo74zARhjTjDGLDPGTPedpYAxZkOh2pR1rMeGXJyNMbWBXwAbQ32uMBpmrW1prW0FzACC8MMyB2hmrU0F1gF/8JwHYBXwS2ChzxDGmBOA54D2QDPgJmNMk2N/VlSMwWUKihzgXmttM+Ai4K4gfJ+stQeAK/L/vaUCHYwxxaxbiKq7gc98hzhCHm4TSitr7TG/R+EYOT8D3B+G5wkba+33hd6tgvuGeGWtfddaW5BjCVDbZx4Aa+3n1tp1lHQ7aeRcCKyz1m601h4CJgLXec6EtfYD4DvfOQpYa7dZa5fn//57YA2Q4jeVY60tuG/kRNxcltd+af6gsSPwks8cRTCUsO6GVJyNMV2BzdbaVaE8TyQYY4YaYzYBvYBHfOc5wu1Apu8QAZICbC70/hYCUnSCyhhzFm6U+qHfJE5+C+ETYBvwjrX2I8+RCgaNQZtUs8A7xpiPjDG/PtYDj7tawxjzDlB4K5fJ/wIPA4NxLY3CH4uKY+T6o7X2bWvtw8DD+f3L3wJDfGfKf8wfgUPW2gmRzlPSTBJbjDFVgSnA3Ue8SvQm/1Vhq/y5lLeMMedaa720FIwxnYDt1trlxph0/L8yLOwSa+1WY8zpuCK9Jv8V2lGOW5yttb8o6r8bY5oDZwErjDEG9zJ9qTHmQmvtjrJnL5nichVhAjCTKBTn42UyxtyGe6l1ZaSzFCjF98mnbKBuofdr5/83OYIxpjyuMI+31k7znedI1to9xpj5wLX46/deAnTNX1+fBJxkjBlnre1znM+LOGvt1vxfvzbGTMW19IoszmVua1hrP7XWnmGtPdtaWx/3UrRVNArz8RhjGhR6txuuN+eVMeZa3MusrvkTKEHjc3TxEdDAGFPPGFMR6AkEZYbdEKyR12jgM2vts76DFDDG1DDGnJL/+yTcq+m1vvJYawdba+taa8/G/SzNC0JhNsZUzn/VgzGmCnAN8Glxjw/LUrp8luD8EP/FGLPSGLMcuBo3a+vbP4CquJcyy4wxz/sOZIzpZozZDLQF/m2M8dIHt9bmAgUbWVYDEwvvMPTFGDMB+A/QyBizyRjjdfOMMeYSoDdwZf5SrGX5/9P37Uxgfv6/tw+B2dbamZ4zBVEy8EF+b34J8La1dk5xD9YmFBGRAArnyFlERMJExVlEJIBUnEVEAkjFWUQkgFScRUQCSMVZRCSAVJxFRAJIxVlEJIBUnEVEosAYc37+QfsVjTFV8i+6OLfYx2uHoIhIdBhjHscdxpSEO275yWIfq+IsIhIdxpgKuIO+9gEX22MUYLU1RESipwbuALSTgErHeqBGziIiUWKMmQa8BtQHallrf1vcY4972L6IiITOGHMLcNBaOzH/UuNFxph0a+2CIh+vkbOISPCo5ywiEkAqziIiAaTiLCISQCrOIiIBpOIsIhJAKs4iIgGk4iwiEkAqziIiAfT/S8yLajxRBAwAAAAASUVORK5CYII="
     },
     "execution_count": 40,
     "metadata": {
     },
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<sympy.plotting.plot.Plot at 0x90935a8198>"
      ]
     },
     "execution_count": 40,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x,a,b,c=sp.symbols('x,a,b,c')\n",
    "f=sp.exp(-(x**2-a*x-b)/c)\n",
    "plot(f.subs([(a,2),(b,1),(c,3)]),(x,-4,5))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 0,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
   ],
   "source": [
    "sp.solve(f.diff(x),x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false
   },
   "source": [
    "## <div dir=\"RTL\"> תרגיל 12 </div>\n",
    "<div dir=\"RTL\"> מזריקים כמות A של תרופה לחולה. הריכוז c  של התרופה נימדד ב: $ \\frac{mg}{ml} $.<br> כעבור זמן t מרגע הזרקת התרופה הריכוז ניתן על ידי : $ c(t)=Ate^{-t/3} $. הזמן נימדד בדקות. <br>הריכוז המקסימאלי המותר של התרופה הוא $ 1 \\frac{mg}{ml}$ </div>\n",
    "\n",
    "<div dir=\"RTL\"> - איזו כמות מקסימאלית A מותר להזריק ? ומתי מתקבל הריכוז המקסימאלי? </div>\n",
    "<div dir=\"RTL\"> -  שרטטו גרף של הריכוז בדם כתלות בזמן והעריכו באמצעותו מתי מתקבל ריכוז של $ 0.25 \\frac{mg}{ml}$ </div>\n",
    "<div dir=\"RTL\"> - מצאו לסעיף הקודם תשובה מדויקת בעזרת הפונקציה nsolv. </div>\n",
    "<div dir=\"RTL\"> -כל כמה זמן צריך להזריק לחולה את התרופה כדי שהריכוז לא יהיה מעבר לערך המקסימאלי ולא יפחת מערך מינימאלי של $ 0.25 \\frac{mg}{ml}$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/latex": [
       "$$\\left [ 3\\right ]$$"
      ]
     },
     "execution_count": 21,
     "metadata": {
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "A, t =sp.symbols('A t')\n",
    "c_t = A * t * sp.exp(-t/3)\n",
    "sp.solve(sp.diff(c_t,t),t)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (Ubuntu Linux)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}