Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

11th grade-all tasks

2151 views
Kernel: Python 3 (Anaconda)
import sympy as sp sp.init_printing()
sp.var('B,L, m, F_B, E, R, t') v = sp.Function('v') I = sp.Function('I') F_B = B * L *I(t) eq1 = sp.Eq(v(t).diff(t),F_B/m) eq2 = sp.Eq(I(t), (E - B * L * v(t)) / R) eq1, eq2
(ddtv(t)=BLmI(t),I(t)=1R(BLv(t)+E))\left ( \frac{d}{d t} v{\left (t \right )} = \frac{B L}{m} I{\left (t \right )}, \quad I{\left (t \right )} = \frac{1}{R} \left(- B L v{\left (t \right )} + E\right)\right )
eq3 = eq1.subs([(I(t),eq2.rhs)]) eq3
ddtv(t)=BLRm(BLv(t)+E)\frac{d}{d t} v{\left (t \right )} = \frac{B L}{R m} \left(- B L v{\left (t \right )} + E\right)
sp.dsolve(eq3,v(t))
v(t)=1BL(E+eBL(BLtRm+C1))v{\left (t \right )} = \frac{1}{B L} \left(E + e^{B L \left(- \frac{B L t}{R m} + C_{1}\right)}\right)
sp.solve(_.rhs.subs([(t,0)]),'C1')
[1BLlog(E)]\left [ \frac{1}{B L} \log{\left (- E \right )}\right ]