Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
2108 views
Kernel: Python 3 (old Anaconda 3)
import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set()
x = np.linspace(-5, 5) y = x ** 2 plt.scatter(x, y) plt.axis('equal');
Image in a Jupyter notebook
data = np.column_stack((x, y)) from scipy.spatial.distance import pdist, squareform d = pdist(data) d.shape
(1225,)
d = squareform(d) d
array([[ 0. , 2.00955668, 3.93625449, ..., 10.36005956, 9.99783404, 10. ], [ 2.00955668, 0. , 1.92670729, ..., 9.58125762, 9.59183673, 9.99783404], [ 3.93625449, 1.92670729, 0. , ..., 9.18367347, 9.58125762, 10.36005956], ..., [ 10.36005956, 9.58125762, 9.18367347, ..., 0. , 1.92670729, 3.93625449], [ 9.99783404, 9.59183673, 9.58125762, ..., 1.92670729, 0. , 2.00955668], [ 10. , 9.99783404, 10.36005956, ..., 3.93625449, 2.00955668, 0. ]])
from sklearn.manifold import MDS model = MDS(n_components=2, dissimilarity='precomputed') out = model.fit_transform(d) plt.scatter(out[:, 0], out[:, 1]) plt.axis('equal');
Image in a Jupyter notebook
d = squareform(pdist(data, metric='cityblock')) model = MDS(n_components=2, dissimilarity='precomputed') out = model.fit_transform(d) plt.scatter(out[:, 0], out[:, 1]) plt.axis('equal');
Image in a Jupyter notebook