Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Code

442 views
bitmask = (2^(30*8) - 1); #internal state s_i = None; def Dual_EC_DRBG(P, Q, h_adin=0, s_0=None): global s_i; if(s_0 == None): s_0 = int(floor((2^16-1)*random())); if(s_i == None): s_i = s_0; t_i = s_i ^^ h_adin; s_i = (t_i*P)[0].lift(); r_i = (s_i*Q)[0].lift(); r_i = r_i & bitmask; return r_i; def Random_Generator(P, Q, byte, h_adin=0): result = 0; req = (byte/30).ceil(); for i in range(req): if(i == 0): result = (result << (30*8)) | Dual_EC_DRBG(P, Q, h_adin) else: result = (result << (30*8)) | Dual_EC_DRBG(P, Q) result = result >> ((30*req - byte)*8) return result; def Predict(P, Q, byte, p, b, curve, r, d): result = []; req = (byte/30).ceil(); r_1 = r >> (len(hex(r))*4 - 30*8); r_2 = r & (2^(len(hex(r))*4 - 30*8) - 1); for i in range(2^16): mb = i << (30*8); x_cand = mb | r_1; y = Mod(x_cand^3 - 3*x_cand + b, p); if(y.is_square()): y_cand = y.sqrt(); try: R = curve(x_cand, y_cand); s_cand = (d*R)[0].lift(); r_cand = (s_cand*Q)[0].lift(); r_cand = r_cand & bitmask; if((hex(r_cand).startswith(hex(r_2))) or (hex(r_2).startswith(hex(r_cand)))): r = 0; for j in range(req): s_cand = (s_cand*P)[0].lift(); r_cand = (s_cand*Q)[0].lift(); r_cand = r_cand & bitmask; r = (r << (30*8)) | r_cand r = r >> ((30*req - byte)*8) result.append(r); except: continue; return result; #Curve P-256 p = 115792089210356248762697446949407573530086143415290314195533631308867097853951; n = 115792089210356248762697446949407573529996955224135760342422259061068512044369; b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b; Px = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296; Py = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5; #Qx = 0xc97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efca67c59852018192; #Qy = 0xb28ef557ba31dfcbdd21ac46e2a91e3c304f44cb87058ada2cb815151e610046; # y^2 = x^3 - 3*x + b (mod p) curve = EllipticCurve(GF(p), [0, 0, 0, -3, b]); print curve; P = curve(Px, Py); #Q = curve(Qx, Qy); #Backdoor d = 5; order = P.additive_order(); e = inverse_mod(d, order); #P = d*Q; Q = e*P; print "P = ", P; print "Q = ", Q; r = Random_Generator(P, Q, 32); print "r = ", r; %time rp = Predict(P, Q, 120, p, b, curve, r, d); for i in range(len(rp)): print "rp = ", hex(rp[i]); r = Random_Generator(P, Q, 60); print "r = ", hex(r); r = Random_Generator(P, Q, 60); print "r = ", hex(r);
Elliptic Curve defined by y^2 = x^3 + 115792089210356248762697446949407573530086143415290314195533631308867097853948*x + 41058363725152142129326129780047268409114441015993725554835256314039467401291 over Finite Field of size 115792089210356248762697446949407573530086143415290314195533631308867097853951 P = (48439561293906451759052585252797914202762949526041747995844080717082404635286 : 36134250956749795798585127919587881956611106672985015071877198253568414405109 : 1) Q = (100222093819885759857726245131128697024676897724593576735535145416600847521071 : 112705950327624587511154978849178363127000253898669394213565898066000545039919 : 1) r = 77520781625289714994182336106159725694469664721153374789457932012102615587015 CPU time: 884.02 s, Wall time: 1756.95 s rp = 253a5e4cbfa9d0f1a4e188b55802909c70876893d3af49cf824003dfb63617e722c0fd85515ee0133c69ed739af0a1533037cbf73374058135b704d446ff2a9e98a8b64c69b65c633998f8b42a421c50cc95d461c978c8117caf35a435aa806dad260e4189f54739c9acd6028b7bc68f73d3101296b5c04e rp = 24f0a075580d6649084c5e7668510b7e7e44af52bbb447371dc2d4277c0eb2f9cd87488e516629af63cc507f67b9a6915ec250e4f3ea93e85b8684e5279eb4b3840cc61203d6b502bfdd701a5c8d37477faee34d526d43ef44a223de8e34372b1b02dbf4cf30e5d002d4d91080fec3a031e182b5d5989498 r = 253a5e4cbfa9d0f1a4e188b55802909c70876893d3af49cf824003dfb63617e722c0fd85515ee0133c69ed739af0a1533037cbf73374058135b704d4 r = 46ff2a9e98a8b64c69b65c633998f8b42a421c50cc95d461c978c8117caf35a435aa806dad260e4189f54739c9acd6028b7bc68f73d3101296b5c04e