Environment to perform calculations of equivariant vector bundles on homogeneous varieties
Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2 / src / Equivariant_Vector_Bundles_On_Homogeneous_Varieties / Base_Space / __pycache__ / Grassmannian.cpython-311.pyc
1844 viewsLicense: GPL3
ubuntu2204
� b�]f� � � � d dl T ed� � Z ed� � Z ed � � Zd dlmZ G d� de� � Z G d� de� � Z G d � d e� � Z dS )� )�*� � )�Irreducible_Homogeneous_Varietyc �n � � e Zd Zdededdf� fd�Zdee fd�Zd defd�Zdefd �Z dd�Z dd�Z� xZS )�Grassmannian�k�N�returnNc � �� t |t � � sJ t d� � � � �t |k sJ t d� � � � �|| _ t |t � � sJ t d� � � � �|t t t |t z � � v sKJ t dt t t t |t z � � � � z dz � � � � �|| _ ddlm} |d|t z � � � }|� |� � � }t t | � � � |� � dS )z� Initialize the Grassmannian Gr(k,N). INPUT: - ``k`` -- Integer ; - ``N`` -- Integer ; OUTPUT: None. z%The input for `N` must be an integer.z3The integer `N` must be equal to or greater than 2.z%The input for `k` must be an integer.z(The integer `k` need to be in the range �.r )�Irreducible_Cartan_Group�A)� Cartan_Family� Cartan_Degree)� Excluded_NodeN)� isinstance�Integer� TypeError� _sage_const_2� ValueError�_N�ellipsis_range� _sage_const_1�Ellipsis�str�_k�REquivariant_Vector_Bundles_On_Homogeneous_Varieties.Base_Space.Homogeneous_Varietyr �Maximal_Parabolic_Subgroup�superr �__init__)�selfr r r �G�P� __class__s ���/home/user/Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2/src/Equivariant_Vector_Bundles_On_Homogeneous_Varieties/Base_Space/Grassmannian.pyr! zGrassmannian.__init__ s� �� � �1�w�(�(�l�l�)�Dk�:l�:l�l�l�l���"�"�"�J�?t�4u�4u�"�"�"�����1�w�(�(�l�l�)�Dk�:l�:l�l�l�l��^�]�X�q���Q�Q�R�R�R�dn� pZ� [^� `n� p}� @H� JK� LY� JY� `\� `\� [^� [^� p^� _b� pb� ec� ec�R�R�R����������$�$�C��-��Z�Z�Z�� �(�(��(�;�;�� �|�d�$�$�-�-�q�2�2�2�2�2� c �R � | � � � | � � � fS �zDReturns all attributes which are necessary to initialize the object.�r r �r"