Environment to perform calculations of equivariant vector bundles on homogeneous varieties
Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2 / tests / famous_collections / Kuznetsov-Polishchuk-collection.ipynb
2641 viewsLicense: GPL3
ubuntu2204
Kernel: SageMath 9.8
In [4]:
%run '/home/user/Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-0-1/src/Initialize.ipynb' from IPython.display import clear_output , display , HTML import pandas as pd
In [5]:
Cartan_Family = 'B' n=4 k=3 G = Irreducible_Cartan_Group( Cartan_Family , n ) P = G.Maximal_Parabolic_Subgroup(k) X = G/P #sr = X.Basis('sr') #fw = X.Basis('fw') #ambt = X.Basis('ambt') print( 'X:' , X ) print( '(rk K_0(X) = '+str(X.K0().rank())+')' ) print() Keys = [ 'Output' , 'Coloring' , 'ToolTips' ] Data = { Key : [] for Key in Keys } cUs_In_Previous_Blocks = [] cUs_In_Current_Block = [] Previous_Coloring = -1 Rows = [] for Counter_Over_Collection , Counter_Over_Block , t , Highest_Weight , cE in X.Kuznetsov_Polishchuk_Collection() : if Counter_Over_Block == 1 : Coloring = (Previous_Coloring+1)%2 cUs_In_Previous_Blocks += cUs_In_Current_Block cUs_In_Current_Block = [] else : Coloring = Previous_Coloring cU = X.calU(Highest_Weight) if cU.Is_Exceptional() : Is_Exceptional = 'Yes.' else : Is_Exceptional = 'No.' cUs_In_Current_Block += [ cU ] if not False in [ Result for Result in cU.Is_SemiOrthogonal_To(cUs_In_Previous_Blocks) ] : SemiOrthogonal_Relations = 'Yes.' else : SemiOrthogonal_Relations = 'No.' Data['Output'] += [ [ str(t) , str(Counter_Over_Block) , str(cU) , str(Is_Exceptional) , str(SemiOrthogonal_Relations) ] ] Data['Coloring'] += [ 5*[str(Coloring)] ] Data['ToolTips'] += [ [ '' , '' , cE , '' , '' ] ] Length = Counter_Over_Collection # Implement dataframe. Index = pd.Index( [ 1 .. Length ] , name='Numbering running over total collection:' ) Columns = pd.Index( [ 'Block index t' , 'Numbering running over current block' , 'cU(Lambda)' , 'Is cU(Lambda) exceptional?' , 'Is cU(Lambda) semi-orthogonal to those cU`s of the previous blocks?' ] , name='' ) DF = {} for Key , Rows in Data.items() : DF.update({ Key : pd.DataFrame( Rows , index=Index , columns=Columns ) }) #DF = pd.DataFrame( Data['Rows'] , index=Index , columns=Columns ) S = DF['Output'].style S = DF['Output'].style\ .set_caption("Kuznetsov-Polishchuk collection on "+str( X.__str__( Output_Style='Short' ) )+".")\ .set_table_styles( [ { 'selector' : '' , 'props' : 'border-collapse: separate;' } , { 'selector' : 'caption' , 'props' : 'caption-side: bottom; font-size:1.3em;' } , { 'selector' : '.index_name' , 'props' : 'font-style: italic; color: darkgrey; font-weight:normal;' } , { 'selector' : 'th:not(.index_name)' , 'props' : 'background-color: #FFA500; color: white;' } , { 'selector' : 'th.col_heading' , 'props' : 'text-align: center;' } , { 'selector' : 'td' , 'props' : 'text-align: center; font-weight:normal;' } , { 'selector' : '.0' ,'props' : '' } , { 'selector' : '.1' , 'props' : 'background-color: #f28080;' } , { 'selector' : 'td:hover' , 'props' : 'background-color: #ffffb3;' } ] , overwrite=False )\ .set_tooltips( DF['ToolTips'] , css_class='pd-tt' , props='visibility: hidden; position: absolute; z-index: 1; border: 1px solid #000066;' 'background-color: white; color: #000066; font-size: 0.8em;' 'transform: translate(0px, -24px); padding: 0.6em; border-radius: 0.5em;' )\ .set_td_classes( DF['Coloring'] ) display(S)
Out[5]:
X: Smooth projective variety B4/P({1, 2, 4}).
(rk K_0(X) = 32)
In [0]: