Environment to perform calculations of equivariant vector bundles on homogeneous varieties
Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2 / tests / fullness_for_OG-3-09 / Object_cM.ipynb
1842 viewsLicense: GPL3
ubuntu2204
Kernel: SageMath 9.8
In [1]:
In [2]:
Out[2]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 9-dimensional ambient vector space.
(n=4)
Dimension: 12
Rank of K0(X) (max. collection length): 32
Fano index (max. orbit length): 5
Consecutive Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[1])
3 VB(Lambda[2])
4 VB(Lambda[4])
5 Equivariant extension of VB(Lambda[1] + Lambda[4]) by VB(Lambda[4])
6 Equivariant extension of VB(2*Lambda[1] + Lambda[4]) by VB(Lambda[1] + Lambda[4])
Alternating Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[4])
3 VB(Lambda[1])
4 VB(Lambda[2])
5 Equivariant extension of VB(Lambda[1] + Lambda[4]) by VB(Lambda[4])
6 Equivariant extension of VB(2*Lambda[1] + Lambda[4]) by VB(Lambda[1] + Lambda[4])
In [0]:
In [24]:
Out[24]:
{}
In [0]:
In [40]:
Out[40]:
cM2 has semi-simplification VB(Lambda[2] - Lambda[3] + 2*Lambda[4]) + VB(Lambda[2]) + VB(Lambda[1]) + VB(2*Lambda[4]) + VB(Lambda[3]).
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Yes after row 4 to the columns [0, 1, 2, 3, 4].
Yes after row 5 to the columns [0, 1, 2, 3, 4].
Yes after row 6 to the columns [0, 1, 2, 3, 4].
Can candidate be embedded in the Lefschetz collection LC2?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Yes after row 4 to the columns [0, 1, 2, 3, 4].
Yes after row 5 to the columns [0, 1, 2, 3, 4].
Yes after row 6 to the columns [0, 1, 2, 3, 4].
In [0]:
In [88]:
Out[88]:
VB(3*Lambda[1] + Lambda[3])
VB(2*Lambda[1] + Lambda[2] + 2*Lambda[4])
VB(3*Lambda[1] + Lambda[2] - Lambda[3] + 2*Lambda[4])
VB(2*Lambda[1] + 2*Lambda[4])
VB(2*Lambda[1] + 2*Lambda[2])
VB(Lambda[1] + Lambda[2] + Lambda[3])
VB(2*Lambda[1] + 2*Lambda[3])
VB(3*Lambda[1] + 2*Lambda[4])
VB(4*Lambda[1])
VB(2*Lambda[1] + Lambda[2])
In [0]:
In [84]:
In [38]:
In [0]:
In [0]:
In [0]:
In [0]: