Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

1842 views
License: GPL3
ubuntu2204
Kernel: SageMath 9.8
%run '/home/user/Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-0-1/src/Initialize.ipynb' from IPython.display import clear_output , display , HTML
k = 4 n = 4 X = Orthogonal_Grassmannian( k , 2*n+1 ) fw = X.Basis('fw') print( 'Base space:' , X.__str__( Output_Style='Short' ) ) print( 'rk K0(X):' , X.K0().rank() ) print( 'Fano index:' , X.Fano_Index() ) print() h = X.Fano_Index() # Kuznetsov's spinor bundle filtration calS = X.calU(fw[n]) F4 = ( X.calU().Exterior_Power(4) * calS ) F3 = ( X.calU().Exterior_Power(3) * calS ).Extend_Equivariantly_By( F4 ) F2 = ( X.calU().Exterior_Power(2) * calS ).Extend_Equivariantly_By( F3 ) F1 = ( X.calU().Exterior_Power(1) * calS ).Extend_Equivariantly_By( F2 ) F0 = ( X.calU().Exterior_Power(0) * calS ).Extend_Equivariantly_By( F1 ) LC = X.Lefschetz_Collection( Starting_Block=[] , Support_Pattern='Trivial' ) # First collection # Degree = 0 E = X.calO() LC += X.Lefschetz_Collection( Starting_Block=[E] , Support_Pattern=h*[1] ) # Spinor collection # Degree = 1/2 E = X.calO(1) # Note: calS() == X.calO(1) LC += X.Lefschetz_Collection( Starting_Block=[X.calU( fw[1] ).Extend_Equivariantly_By( F4 * E )] , Support_Pattern=h*[1] ) # Note: We extend X.calU( fw[1]+fw[n] )(-1) and not X.calU( fw[1]+2*fw[n] )(-1) as in the cases k < n. print( 'Objects of starting block:' ) Body = [ [ str(Counter)+':' , str(Object) , str(sum([ 1 for Row in LC.Support_Pattern().values() if Row[Counter-1] == True ])) ] for Counter , Object in enumerate( LC.Starting_Block() , start=1 ) ] show( table(Body) ) print() print( 'Number of objects:' , len(LC) ) print( 'LC has maximal expected length?' , LC.Has_Maximal_Expected_Length() ) print() print( 'Grid of LC:' ) show( LC.Grid( Labelling=[ 'E'+str(Counter) for Counter in [ 1 .. len(LC.Starting_Block()) ] ] ) ) print() LC_Is_Numercially_Exceptional = LC.Is_Numerically_Exceptional() print( 'Is LC numerially exceptional?' , LC_Is_Numercially_Exceptional ) print()
Base space: OGr(4;9) rk K0(X): 16 Fano index: 8 Objects of starting block:
Number of objects: 16 LC has maximal expected length? True Grid of LC:
Is LC numerially exceptional? True