Environment to perform calculations of equivariant vector bundles on homogeneous varieties
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
In [3]:
In [4]:
Out[4]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 13-dimensional ambient vector space.
(n=6)
Dimension: 24
Rank of K0(X) (max. collection length): 160
Fano index (max. orbit length): 9
Consecutive Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[1])
3 VB(Lambda[2])
4 VB(2*Lambda[1])
5 VB(Lambda[1] + Lambda[2])
6 VB(2*Lambda[2])
7 VB(3*Lambda[1])
8 VB(2*Lambda[1] + Lambda[2])
9 VB(Lambda[1] + 2*Lambda[2])
10 VB(3*Lambda[2])
11 VB(3*Lambda[1] + Lambda[2])
12 VB(2*Lambda[1] + 2*Lambda[2])
13 VB(Lambda[6])
14 Equivariant extension of VB(Lambda[1] + Lambda[6]) by VB(Lambda[6])
15 Equivariant extension of VB(2*Lambda[1] + Lambda[6]) by VB(Lambda[1] + Lambda[6])
16 Equivariant extension of VB(3*Lambda[1] + Lambda[6]) by VB(2*Lambda[1] + Lambda[6])
17 Equivariant extension of VB(4*Lambda[1] + Lambda[6]) by VB(3*Lambda[1] + Lambda[6])
Alternating Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[6])
3 VB(Lambda[1])
4 VB(Lambda[2])
5 Equivariant extension of VB(Lambda[1] + Lambda[6]) by VB(Lambda[6])
6 VB(2*Lambda[1])
7 VB(Lambda[1] + Lambda[2])
8 VB(2*Lambda[2])
9 Equivariant extension of VB(2*Lambda[1] + Lambda[6]) by VB(Lambda[1] + Lambda[6])
10 VB(3*Lambda[1])
11 VB(2*Lambda[1] + Lambda[2])
12 VB(Lambda[1] + 2*Lambda[2])
13 VB(3*Lambda[2])
14 Equivariant extension of VB(3*Lambda[1] + Lambda[6]) by VB(2*Lambda[1] + Lambda[6])
15 VB(3*Lambda[1] + Lambda[2])
16 VB(2*Lambda[1] + 2*Lambda[2])
17 Equivariant extension of VB(4*Lambda[1] + Lambda[6]) by VB(3*Lambda[1] + Lambda[6])
Gap.
lMax-l = 12
(lMax-l)/wMax = 4/3
Try to fill the gap.
Start later than candidate #1497.
Consider X.calU( fw[5] ) * G.rmV( fw[6] )
Current counter: 2060
In [0]:
In [4]:
Out[4]:
Base space: OGr(3;13)
rk K0(X): 160
Fano index: 9
Objects of starting block:
Number of objects: 178
LC has maximal expected length? False
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [5]:
Out[5]:
Base space: Smooth projective variety B6/P({1, 2, 4, 5, 6}).
Rank of Grothendieck group rk( K_0(X) ) = 160
Consider version 1.
Objects of starting block:
1: VB(0)
2: VB(Lambda[1])
3: VB(Lambda[2])
4: VB(2*Lambda[1])
5: VB(Lambda[1] + Lambda[2])
6: VB(2*Lambda[2])
7: VB(3*Lambda[1])
8: VB(2*Lambda[1] + Lambda[2])
9: VB(Lambda[1] + 2*Lambda[2])
10: VB(3*Lambda[2])
11: VB(3*Lambda[1] + Lambda[2])
12: VB(2*Lambda[1] + 2*Lambda[2])
13: Equivariant extension of [ VB(Lambda[1] - Lambda[3] + 2*Lambda[6]) , VB(-Lambda[3] + 2*Lambda[6]) ] by VB(-Lambda[3] + Lambda[5])
14: VB(Lambda[6])
15: Equivariant extension of VB(Lambda[1] + Lambda[6]) by VB(Lambda[6])
16: Equivariant extension of VB(2*Lambda[1] + Lambda[6]) by VB(Lambda[1] + Lambda[6])
17: Equivariant extension of VB(3*Lambda[1] + Lambda[6]) by VB(2*Lambda[1] + Lambda[6])
18: Equivariant extension of VB(4*Lambda[1] + Lambda[6]) by VB(3*Lambda[1] + Lambda[6])
Grid of LC:
Number of objects: 157
LC has maximal expected length? False
Is LC numerially exceptional? True
In [0]:
In [0]:
In [0]: