Environment to perform calculations of equivariant vector bundles on homogeneous varieties
License: GPL3
ubuntu2204
Kernel: SageMath 9.8
In [3]:
In [4]:
Out[4]:
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In [4], line 32
30 Case['Tooltips'] = ', '.join([ str(Object) for Object in LC.Starting_Block() ]) + ' '
31 # Numerically_Exceptional and Cell_Coloring
---> 32 if LC.Is_Numerically_Exceptional() :
33 Case['Numerically_Exceptional'] = True
34 Case['Cell_Coloring'] = 'Numerically_Exceptional'
File /tmp/ipykernel_6636/2856276442.py:374
, in Lefschetz_Collection.Is_Numerically_Exceptional(self)
372 def Is_Numerically_Exceptional ( self ) -> bool :
373 """Tests if the Lefschetz collection is numerically exceptional."""
--> 374 return self.Is_Exceptional( Test_Numerically=True )
File /tmp/ipykernel_6636/2856276442.py:365
, in Lefschetz_Collection.Is_Exceptional(self, Test_Numerically)
363 if Both_Objects_Are_Simultaneously_Accessible_In_Rows_With_Difference_yDelta :
364 Obj1 = self.Starting_Block(xPos1)
--> 365 Obj2 = self.Starting_Block(xPos2) * self.Twist()**yDelta
366 for Obj2_Is_SemiOrthogonal_To_Obj1 in Obj2.Is_SemiOrthogonal_To( Obj1 , Test_Numerically ) :
367 if not Obj2_Is_SemiOrthogonal_To_Obj1 : return False
File /tmp/ipykernel_6636/3214646350.py:33
, in Equivariant_Vector_Bundle.__pow__(self, e)
30 else : Factor = self
32 for Counter in (ellipsis_range( Integer(1) ,Ellipsis, abs(e) )) :
---> 33 Product *= Factor
35 return Product
File /tmp/ipykernel_6636/3978931721.py:41
, in Irreducible_Equivariant_Vector_Bundle.__mul__(self, other)
38 Prd_Twist_HW = self.Highest_Weight_Supported_Over( Nodes=self.Base_Space().Parabolic_Subgroup().Excluded_Nodes() ) + other.Highest_Weight_Supported_Over( Nodes=other.Base_Space().Parabolic_Subgroup().Excluded_Nodes() )
40 # Product of Levi parts, i.e. product of the representations of highest weights supported over the total Levi part
---> 41 Prd_Levi_Rep = self.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse') * other.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse')
43 # In the remaining part, we merge the separate products over both the twisting part (excluded nodes) and the Levi part (included nodes)
44 # 1. Define subroutine to get coefficients and multiplicities of a given weyl character
45 def Get_Coefficients_And_Multiplicity_Of_Weyl_Character ( Weyl_Character ) :
File /tmp/ipykernel_6636/3978931721.py:316
, in Irreducible_Equivariant_Vector_Bundle.Representation_Supported_Over_Levi_Part(self, Decomposition_Style)
313 elif Decomposition_Style == 'Coarse' :
314 # Supported over the total Levi Part
315 WCR = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Weyl_Character_Ring()
--> 316 Basis = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Cartan_Type().root_system().weight_space().fundamental_weights()
317 return WCR( sum([ Highest_Weight[Node]*Basis[Relabel] for Node , Relabel in Relabelling.items() ]) )
319 else : raise ValueError('The input for the decomposition style is unknown.')
File /tmp/ipykernel_6636/2577564027.py:117
, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Initialize_As_Cartan_Group(self)
112 def Initialize_As_Cartan_Group ( self ) -> Irreducible_Cartan_Group or Reducible_Cartan_Group :
113 """
114 Returns the Cartan group associated to the Cartan string of ``self``.
115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses.
116 """
--> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ]
118 if len(Components) == Integer(1) : return Components[Integer(0)]
119 else : return Direct_Sum_Of_Cartan_Groups( Components )
File /tmp/ipykernel_6636/2577564027.py:117
, in <listcomp>(.0)
112 def Initialize_As_Cartan_Group ( self ) -> Irreducible_Cartan_Group or Reducible_Cartan_Group :
113 """
114 Returns the Cartan group associated to the Cartan string of ``self``.
115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses.
116 """
--> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ]
118 if len(Components) == Integer(1) : return Components[Integer(0)]
119 else : return Direct_Sum_Of_Cartan_Groups( Components )
File /tmp/ipykernel_6636/2577564027.py:37
, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Cartan_Data(self)
35 """Returns the Cartan data of each irreducible component of ``self``."""
36 for Connected_Component in self.Connected_Components_Of_Included_Nodes() :
---> 37 Cartan_Subtype = self.Parent_Group().Cartan_Type().subtype( Connected_Component )
38 yield Cartan_Subtype.type() , len(Cartan_Subtype.index_set())
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_type.py:1256
, in CartanType_abstract.subtype(self, index_set)
1239 def subtype(self, index_set):
1240 """
1241 Return a subtype of ``self`` given by ``index_set``.
1242
(...)
1254 ['C', 3]
1255 """
-> 1256 return self.cartan_matrix().subtype(index_set).cartan_type()
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_matrix.py:578
, in CartanMatrix.subtype(self, index_set)
576 ind = self.index_set()
577 I = [ind.index(i) for i in index_set]
--> 578 return CartanMatrix(self.matrix_from_rows_and_columns(I, I), index_set)
File /ext/sage/9.8/src/sage/misc/classcall_metaclass.pyx:320
, in sage.misc.classcall_metaclass.ClasscallMetaclass.__call__()
318 """
319 if cls.classcall is not None:
--> 320 return cls.classcall(cls, *args, **kwds)
321 else:
322 # Fast version of type.__call__(cls, *args, **kwds)
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_matrix.py:307
, in CartanMatrix.__classcall_private__(cls, data, index_set, cartan_type, cartan_type_check, borcherds)
305 data[(reverse[j], reverse[i])] = -l
306 else:
--> 307 M = matrix(data)
308 if borcherds:
309 if not is_borcherds_cartan_matrix(M):
File /ext/sage/9.8/src/sage/matrix/constructor.pyx:643
, in sage.matrix.constructor.matrix()
641 """
642 immutable = kwds.pop('immutable', False)
--> 643 M = MatrixArgs(*args, **kwds).matrix()
644 if immutable:
645 M.set_immutable()
File /ext/sage/9.8/src/sage/matrix/args.pyx:655
, in sage.matrix.args.MatrixArgs.matrix()
653 True
654 """
--> 655 self.finalize()
656
657 cdef Matrix M
File /ext/sage/9.8/src/sage/matrix/args.pyx:940
, in sage.matrix.args.MatrixArgs.finalize()
938 if MatrixSpace is None:
939 from .matrix_space import MatrixSpace
--> 940 self.space = MatrixSpace(self.base, self.nrows, self.ncols,
941 sparse=self.sparse, **self.kwds)
942
File /ext/sage/9.8/src/sage/misc/classcall_metaclass.pyx:320
, in sage.misc.classcall_metaclass.ClasscallMetaclass.__call__()
318 """
319 if cls.classcall is not None:
--> 320 return cls.classcall(cls, *args, **kwds)
321 else:
322 # Fast version of type.__call__(cls, *args, **kwds)
File /ext/sage/9.8/src/sage/matrix/matrix_space.py:513
, in MatrixSpace.__classcall__(cls, base_ring, nrows, ncols, sparse, implementation, **kwds)
409 class MatrixSpace(UniqueRepresentation, Parent):
410 """
411 The space of matrices of given size and base ring
412
(...)
510 True
511 """
--> 513 @staticmethod
514 def __classcall__(cls, base_ring, nrows, ncols=None, sparse=False, implementation=None, **kwds):
515 """
516 Normalize the arguments to call the ``__init__`` constructor.
517
(...)
557 False
558 """
559 if base_ring not in _Rings:
File src/cysignals/signals.pyx:310
, in cysignals.signals.python_check_interrupt()
KeyboardInterrupt:
In [0]:
In [18]:
Out[18]:
------------------------------------------------------------------------------------------------------------------------------------------------------
Cartan type A_n/P1:
Base space X=Gr(1;3), i.e. X=A2/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;4), i.e. X=A3/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;5), i.e. X=A4/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;6), i.e. X=A5/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;7), i.e. X=A6/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;8), i.e. X=A7/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;9), i.e. X=A8/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;10), i.e. X=A9/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(1;11), i.e. X=A10/P1
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
------------------------------------------------------------------------------------------------------------------------------------------------------
Cartan type A_n/P2:
Base space X=Gr(2;3), i.e. X=A2/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;4), i.e. X=A3/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;5), i.e. X=A4/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;6), i.e. X=A5/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;7), i.e. X=A6/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;8), i.e. X=A7/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;9), i.e. X=A8/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;10), i.e. X=A9/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(2;11), i.e. X=A10/P2
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
------------------------------------------------------------------------------------------------------------------------------------------------------
Cartan type A_n/P3:
Base space X=Gr(3;4), i.e. X=A3/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;5), i.e. X=A4/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;6), i.e. X=A5/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;7), i.e. X=A6/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;8), i.e. X=A7/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;9), i.e. X=A8/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;10), i.e. X=A9/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(3;11), i.e. X=A10/P3
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
------------------------------------------------------------------------------------------------------------------------------------------------------
Cartan type A_n/P4:
Base space X=Gr(4;5), i.e. X=A4/P4
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(4;6), i.e. X=A5/P4
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(4;7), i.e. X=A6/P4
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(4;8), i.e. X=A7/P4
We consider the collection of Fonarev.
Starting block:
Grid:
Is it numerically exceptional? Yes.
Has maximal expected length? Yes.
Base space X=Gr(4;9), i.e. X=A8/P4
We consider the collection of Fonarev.
Starting block:
Grid:
WARNING: Some output was deleted.
In [0]: