Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

2633 views
License: GPL3
ubuntu2204
Kernel: SageMath 9.8
%run '/home/user/Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-0-1/src/Initialize.ipynb'
Minimal_n = 2 Maximal_n = 10 Keys = [ 'Base_Space' , 'Ist/Soll' , 'Tooltips', 'Numerically_Exceptional' , 'Cell_Coloring' , 'Cell_Bordering' ] Data = { Key : [] for Key in Keys } Header = [ str(Node) for Node in [ 1 .. Maximal_n ] ] for n in [ Minimal_n .. Maximal_n ] : for Key in Data.keys() : if Key in [ 'CellColoring' , 'CellBordering' ] : Value = '' else : Value = None Data[Key] += [ n * [ '?' ] + (Maximal_n-n) * [ Value ] ] for k in [ 1 .. n ] : #[ 1 .. CartanDegree ] : X = Grassmannian( k , 2*n+1 ) fw = X.Basis('fw') LC = X.Fonarev_Collection() Case = { Key : None for Key in Keys } # Base space Case['Base_Space'] = X.__str__( Output_Style='Short' ) # Ist/Soll and Cell_Bordering Ist = len(LC) Soll = X.K0().rank() Case['Ist/Soll'] = str(Ist)+ ' / '+str(Soll) if Ist == Soll : Case['Cell_Bordering'] = 'Maximal_Expected_Length' else : Case['Cell_Bordering'] = '' # Tooltips Case['Tooltips'] = ', '.join([ str(Object) for Object in LC.Starting_Block() ]) + ' ' # Numerically_Exceptional and Cell_Coloring if LC.Is_Numerically_Exceptional() : Case['Numerically_Exceptional'] = True Case['Cell_Coloring'] = 'Numerically_Exceptional' else : Case['Numerically_Exceptional'] = False Case['Cell_Coloring'] = 'Not_Exceptional' # Transfer single case into Data-Pool. for Key , Value in Case.items() : Data[Key][-1][k-1] = Value # Implement dataframe. Index = pd.Index( [Minimal_n .. n] , name='n:' ) Columns = pd.Index( [1 .. Maximal_n] , name='k:') DF = {} for Key , Rows in Data.items() : DF.update({ Key : pd.DataFrame( Rows , index=Index , columns=Columns ) }) S = DF['Ist/Soll'].style S = DF['Ist/Soll'].style\ .set_caption("Working status for exceptional collections on homogeneous varieties belonging to the Cartan family A.")\ .set_table_styles( [ { 'selector' : '' , 'props' : 'border-collapse: separate;' } , { 'selector' : 'caption' , 'props' : 'caption-side: bottom; font-size:1.3em;' } , { 'selector' : '.index_name' , 'props' : 'font-style: italic; color: darkgrey; font-weight:normal;' } , { 'selector' : 'th:not(.index_name)' , 'props' : 'background-color: #FFA500; color: white;' } , { 'selector' : 'th.col_heading' , 'props' : 'text-align: center;' } , { 'selector' : 'td' , 'props' : 'text-align: center; font-weight:normal;' } , { 'selector' : '.Maximal_Expected_Length' ,'props' : 'border: 2px dashed green;' } , { 'selector' : '.Numerically_Exceptional' ,'props' : 'background-color: #e6ffe6;' } , { 'selector' : '.Not_Exceptional' , 'props' : 'background-color: #f28080;' } , { 'selector' : 'td:hover' , 'props' : 'background-color: #ffffb3;' } ] , overwrite=False )\ .set_tooltips( DF['Tooltips'] , css_class='pd-tt' , props='visibility: hidden; position: absolute; z-index: 1; border: 1px solid #000066;' 'background-color: white; color: #000066; font-size: 0.8em;' 'transform: translate(0px, -24px); padding: 0.6em; border-radius: 0.5em;' )\ .set_td_classes( DF['Cell_Coloring'] ) clear_output(wait=True) display(S)
--------------------------------------------------------------------------- KeyboardInterrupt Traceback (most recent call last) Cell In [4], line 32 30 Case['Tooltips'] = ', '.join([ str(Object) for Object in LC.Starting_Block() ]) + ' ' 31 # Numerically_Exceptional and Cell_Coloring ---> 32 if LC.Is_Numerically_Exceptional() : 33 Case['Numerically_Exceptional'] = True 34 Case['Cell_Coloring'] = 'Numerically_Exceptional'
File /tmp/ipykernel_6636/2856276442.py:374, in Lefschetz_Collection.Is_Numerically_Exceptional(self) 372 def Is_Numerically_Exceptional ( self ) -> bool : 373 """Tests if the Lefschetz collection is numerically exceptional.""" --> 374 return self.Is_Exceptional( Test_Numerically=True )
File /tmp/ipykernel_6636/2856276442.py:365, in Lefschetz_Collection.Is_Exceptional(self, Test_Numerically) 363 if Both_Objects_Are_Simultaneously_Accessible_In_Rows_With_Difference_yDelta : 364 Obj1 = self.Starting_Block(xPos1) --> 365 Obj2 = self.Starting_Block(xPos2) * self.Twist()**yDelta 366 for Obj2_Is_SemiOrthogonal_To_Obj1 in Obj2.Is_SemiOrthogonal_To( Obj1 , Test_Numerically ) : 367 if not Obj2_Is_SemiOrthogonal_To_Obj1 : return False
File /tmp/ipykernel_6636/3214646350.py:33, in Equivariant_Vector_Bundle.__pow__(self, e) 30 else : Factor = self 32 for Counter in (ellipsis_range( Integer(1) ,Ellipsis, abs(e) )) : ---> 33 Product *= Factor 35 return Product
File /tmp/ipykernel_6636/3978931721.py:41, in Irreducible_Equivariant_Vector_Bundle.__mul__(self, other) 38 Prd_Twist_HW = self.Highest_Weight_Supported_Over( Nodes=self.Base_Space().Parabolic_Subgroup().Excluded_Nodes() ) + other.Highest_Weight_Supported_Over( Nodes=other.Base_Space().Parabolic_Subgroup().Excluded_Nodes() ) 40 # Product of Levi parts, i.e. product of the representations of highest weights supported over the total Levi part ---> 41 Prd_Levi_Rep = self.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse') * other.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse') 43 # In the remaining part, we merge the separate products over both the twisting part (excluded nodes) and the Levi part (included nodes) 44 # 1. Define subroutine to get coefficients and multiplicities of a given weyl character 45 def Get_Coefficients_And_Multiplicity_Of_Weyl_Character ( Weyl_Character ) :
File /tmp/ipykernel_6636/3978931721.py:316, in Irreducible_Equivariant_Vector_Bundle.Representation_Supported_Over_Levi_Part(self, Decomposition_Style) 313 elif Decomposition_Style == 'Coarse' : 314 # Supported over the total Levi Part 315 WCR = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Weyl_Character_Ring() --> 316 Basis = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Cartan_Type().root_system().weight_space().fundamental_weights() 317 return WCR( sum([ Highest_Weight[Node]*Basis[Relabel] for Node , Relabel in Relabelling.items() ]) ) 319 else : raise ValueError('The input for the decomposition style is unknown.')
File /tmp/ipykernel_6636/2577564027.py:117, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Initialize_As_Cartan_Group(self) 112 def Initialize_As_Cartan_Group ( self ) -> Irreducible_Cartan_Group or Reducible_Cartan_Group : 113 """ 114 Returns the Cartan group associated to the Cartan string of ``self``. 115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses. 116 """ --> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ] 118 if len(Components) == Integer(1) : return Components[Integer(0)] 119 else : return Direct_Sum_Of_Cartan_Groups( Components )
File /tmp/ipykernel_6636/2577564027.py:117, in <listcomp>(.0) 112 def Initialize_As_Cartan_Group ( self ) -> Irreducible_Cartan_Group or Reducible_Cartan_Group : 113 """ 114 Returns the Cartan group associated to the Cartan string of ``self``. 115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses. 116 """ --> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ] 118 if len(Components) == Integer(1) : return Components[Integer(0)] 119 else : return Direct_Sum_Of_Cartan_Groups( Components )
File /tmp/ipykernel_6636/2577564027.py:37, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Cartan_Data(self) 35 """Returns the Cartan data of each irreducible component of ``self``.""" 36 for Connected_Component in self.Connected_Components_Of_Included_Nodes() : ---> 37 Cartan_Subtype = self.Parent_Group().Cartan_Type().subtype( Connected_Component ) 38 yield Cartan_Subtype.type() , len(Cartan_Subtype.index_set())
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_type.py:1256, in CartanType_abstract.subtype(self, index_set) 1239 def subtype(self, index_set): 1240 """ 1241 Return a subtype of ``self`` given by ``index_set``. 1242 (...) 1254 ['C', 3] 1255 """ -> 1256 return self.cartan_matrix().subtype(index_set).cartan_type()
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_matrix.py:578, in CartanMatrix.subtype(self, index_set) 576 ind = self.index_set() 577 I = [ind.index(i) for i in index_set] --> 578 return CartanMatrix(self.matrix_from_rows_and_columns(I, I), index_set)
File /ext/sage/9.8/src/sage/misc/classcall_metaclass.pyx:320, in sage.misc.classcall_metaclass.ClasscallMetaclass.__call__() 318 """ 319 if cls.classcall is not None: --> 320 return cls.classcall(cls, *args, **kwds) 321 else: 322 # Fast version of type.__call__(cls, *args, **kwds)
File /ext/sage/9.8/src/sage/combinat/root_system/cartan_matrix.py:307, in CartanMatrix.__classcall_private__(cls, data, index_set, cartan_type, cartan_type_check, borcherds) 305 data[(reverse[j], reverse[i])] = -l 306 else: --> 307 M = matrix(data) 308 if borcherds: 309 if not is_borcherds_cartan_matrix(M):
File /ext/sage/9.8/src/sage/matrix/constructor.pyx:643, in sage.matrix.constructor.matrix() 641 """ 642 immutable = kwds.pop('immutable', False) --> 643 M = MatrixArgs(*args, **kwds).matrix() 644 if immutable: 645 M.set_immutable()
File /ext/sage/9.8/src/sage/matrix/args.pyx:655, in sage.matrix.args.MatrixArgs.matrix() 653 True 654 """ --> 655 self.finalize() 656 657 cdef Matrix M
File /ext/sage/9.8/src/sage/matrix/args.pyx:940, in sage.matrix.args.MatrixArgs.finalize() 938 if MatrixSpace is None: 939 from .matrix_space import MatrixSpace --> 940 self.space = MatrixSpace(self.base, self.nrows, self.ncols, 941 sparse=self.sparse, **self.kwds) 942
File /ext/sage/9.8/src/sage/misc/classcall_metaclass.pyx:320, in sage.misc.classcall_metaclass.ClasscallMetaclass.__call__() 318 """ 319 if cls.classcall is not None: --> 320 return cls.classcall(cls, *args, **kwds) 321 else: 322 # Fast version of type.__call__(cls, *args, **kwds)
File /ext/sage/9.8/src/sage/matrix/matrix_space.py:513, in MatrixSpace.__classcall__(cls, base_ring, nrows, ncols, sparse, implementation, **kwds) 409 class MatrixSpace(UniqueRepresentation, Parent): 410 """ 411 The space of matrices of given size and base ring 412 (...) 510 True 511 """ --> 513 @staticmethod 514 def __classcall__(cls, base_ring, nrows, ncols=None, sparse=False, implementation=None, **kwds): 515 """ 516 Normalize the arguments to call the ``__init__`` constructor. 517 (...) 557 False 558 """ 559 if base_ring not in _Rings:
File src/cysignals/signals.pyx:310, in cysignals.signals.python_check_interrupt()
KeyboardInterrupt:
Yes = '\033[0;32;47m'+'Yes.'+'\033[0;30;47m' No = '\033[0;31;47m'+'No.' +'\033[0;30;47m' for k in [ 1 .. 10 ] : print( 150*'-' ) print( 'Cartan type A_n/P'+str(k)+':' ) print() for n in [ max([ 2 , k ]) .. 10 ] : X = Grassmannian( k , n+1 ) print( 'Base space X='+X.__str__( Output_Style='Short' )+', i.e. X=A'+str(n)+'/P'+str(k) ) print( 'We consider the collection of '+'\033[0;34;47m'+'Fonarev'+'\033[0;30;47m'+'.' ) LC = X.Fonarev_Collection() Labelling = [] Rows = [] for ObjCounter , Obj in enumerate( LC.Starting_Block() , start=1 ) : Label = 'E'+str(ObjCounter) Labelling += [ Label ] Rows += [ [ Label , str(Obj) ] ] print( 'Starting block:' ) show( table( Rows ) ) print( 'Grid:' ) show( LC.Grid( Labelling=Labelling ) ) if LC.Is_Numerically_Exceptional() : Result1 = True ; Output1 = Yes else : Result1 = False ; Output1 = No print( 'Is it numerically exceptional?' , Output1 ) if LC.Has_Maximal_Expected_Length() : Result2 = True ; Output2 = Yes else : Result2 = False ; Output2 = No print( 'Has maximal expected length?' , Output2 ) print() print() print() print() print() print() print()
------------------------------------------------------------------------------------------------------------------------------------------------------ Cartan type A_n/P1: Base space X=Gr(1;3), i.e. X=A2/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;4), i.e. X=A3/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;5), i.e. X=A4/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;6), i.e. X=A5/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;7), i.e. X=A6/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;8), i.e. X=A7/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;9), i.e. X=A8/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;10), i.e. X=A9/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(1;11), i.e. X=A10/P1 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. ------------------------------------------------------------------------------------------------------------------------------------------------------ Cartan type A_n/P2: Base space X=Gr(2;3), i.e. X=A2/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;4), i.e. X=A3/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;5), i.e. X=A4/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;6), i.e. X=A5/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;7), i.e. X=A6/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;8), i.e. X=A7/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;9), i.e. X=A8/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;10), i.e. X=A9/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(2;11), i.e. X=A10/P2 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. ------------------------------------------------------------------------------------------------------------------------------------------------------ Cartan type A_n/P3: Base space X=Gr(3;4), i.e. X=A3/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;5), i.e. X=A4/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;6), i.e. X=A5/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;7), i.e. X=A6/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;8), i.e. X=A7/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;9), i.e. X=A8/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;10), i.e. X=A9/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(3;11), i.e. X=A10/P3 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. ------------------------------------------------------------------------------------------------------------------------------------------------------ Cartan type A_n/P4: Base space X=Gr(4;5), i.e. X=A4/P4 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(4;6), i.e. X=A5/P4 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(4;7), i.e. X=A6/P4 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(4;8), i.e. X=A7/P4 We consider the collection of Fonarev. Starting block:
Grid:
Is it numerically exceptional? Yes. Has maximal expected length? Yes. Base space X=Gr(4;9), i.e. X=A8/P4 We consider the collection of Fonarev. Starting block:
Grid:
WARNING: Some output was deleted.