Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
166 views
M = ModularForms(Gamma1(3),prec=20) M.basis()
[ 1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + 180*q^8 + 12*q^9 + 216*q^10 + 144*q^11 + 84*q^12 + 168*q^13 + 288*q^14 + 72*q^15 + 372*q^16 + 216*q^17 + 36*q^18 + 240*q^19 + O(q^20) ]
R.<q> = QQ[['q']] sum([sum([(a^2 + a*b - b^2) * q^(a^2 + a*b + b^2) for a in range(-10,10)]) for b in range(-10,10)]) + O(q^50)
-2*q - 6*q^3 - 8*q^4 - 28*q^7 - 18*q^9 - 24*q^12 - 52*q^13 - 32*q^16 - 76*q^19 - 84*q^21 - 50*q^25 - 54*q^27 - 112*q^28 - 124*q^31 - 72*q^36 - 148*q^37 - 156*q^39 - 172*q^43 - 96*q^48 - 294*q^49 + O(q^50)
K = QuadraticField(-3) K.discriminant()
-3
M3 = ModularForms(Gamma1(3),3,prec=21) M3.basis()[1]
q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + 81*q^9 + 72*q^10 + 120*q^11 + 117*q^12 + 170*q^13 + 150*q^14 + 216*q^15 + 205*q^16 + 288*q^17 + 243*q^18 + 362*q^19 + 312*q^20 + O(q^21)
R.<q> = QQ[['q']] sum([sum([(0*a^2 + 1 * a*b + (1/2)*b^2) * q^(a^2 + a*b + b^2) for a in range(-10,10)]) for b in range(-10,10)]) + O(q^50) print "\n" -4*M3.basis()[1]
O(q^50) -4*q - 12*q^2 - 36*q^3 - 52*q^4 - 96*q^5 - 108*q^6 - 200*q^7 - 204*q^8 - 324*q^9 - 288*q^10 - 480*q^11 - 468*q^12 - 680*q^13 - 600*q^14 - 864*q^15 - 820*q^16 - 1152*q^17 - 972*q^18 - 1448*q^19 - 1248*q^20 + O(q^21)
R.<q> = QQ[['q']] dd=40 sum([sum([(a^2 + 2 * a*b - b^2) * q^(a^2 + a*b + 2*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^100)
2*q - 6*q^2 + 10*q^4 - 14*q^7 - 6*q^8 + 18*q^9 - 12*q^11 + 42*q^14 - 22*q^16 - 54*q^18 + 36*q^22 + 36*q^23 + 50*q^25 - 70*q^28 - 108*q^29 + 90*q^32 + 90*q^36 - 76*q^37 + 116*q^43 - 60*q^44 - 108*q^46 + 98*q^49 - 150*q^50 - 12*q^53 + 42*q^56 + 324*q^58 - 126*q^63 - 182*q^64 - 236*q^67 + 228*q^71 - 54*q^72 + 228*q^74 + 84*q^77 - 188*q^79 + 162*q^81 - 348*q^86 + 36*q^88 + 180*q^92 - 294*q^98 - 108*q^99 + O(q^100)
M7 = ModularForms(Gamma1(7),3,prec=21) 2*M7.basis()[0]
2*q - 6*q^2 + 10*q^4 - 14*q^7 - 6*q^8 + 18*q^9 - 12*q^11 + 42*q^14 - 22*q^16 - 54*q^18 + O(q^21)
R.<q> = QQ[['q']] dd=40 sum([sum([(2*a^2 + 7*a*b - 2*b^2) * q^(a^2 + a*b + 2*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^100)
4*q - 18*q^2 + 14*q^4 - 40*q^7 - 42*q^8 + 36*q^9 - 48*q^11 + 78*q^14 - 122*q^16 - 162*q^18 + 12*q^22 + 48*q^23 + 100*q^25 - 242*q^28 - 312*q^29 + 54*q^32 + 126*q^36 - 248*q^37 + 208*q^43 - 372*q^44 - 420*q^46 + 196*q^49 - 450*q^50 - 120*q^53 - 90*q^56 + 588*q^58 - 360*q^63 - 826*q^64 - 688*q^67 + 432*q^71 - 378*q^72 + 300*q^74 + 72*q^77 - 592*q^79 + 324*q^81 - 1140*q^86 - 516*q^88 - 36*q^92 - 882*q^98 - 432*q^99 + O(q^100)
M7.basis()
[ q - 3*q^2 + 5*q^4 - 7*q^7 - 3*q^8 + 9*q^9 - 6*q^11 + 21*q^14 - 11*q^16 - 27*q^18 + O(q^21), 1 + 560*q^6 - 2058*q^7 + 4536*q^8 - 6412*q^9 + 7056*q^10 - 8526*q^11 + 12936*q^12 - 14406*q^13 + 8526*q^14 + 952*q^15 - 2016*q^16 - 4410*q^17 + 4900*q^18 + 4116*q^19 - 3528*q^20 + O(q^21), q + 982/3*q^6 - 1345*q^7 + 3005*q^8 - 4163*q^9 + 4543*q^10 - 5524*q^11 + 25165/3*q^12 - 9590*q^13 + 5510*q^14 + 2792/3*q^15 - 1360*q^16 - 3010*q^17 + 9925/3*q^18 + 2660*q^19 - 2926*q^20 + O(q^21), q^2 + 235/3*q^6 - 314*q^7 + 724*q^8 - 1028*q^9 + 1162*q^10 - 1374*q^11 + 5929/3*q^12 - 2198*q^13 + 1359*q^14 - 16/3*q^15 - 159*q^16 - 490*q^17 + 1300/3*q^18 + 644*q^19 - 259*q^20 + O(q^21), q^3 - 15*q^6 + 84*q^7 - 192*q^8 + 281*q^9 - 300*q^10 + 363*q^11 - 511*q^12 + 588*q^13 - 348*q^14 + 17*q^15 + 48*q^16 + 141*q^17 - 75*q^18 - 168*q^19 + 84*q^20 + O(q^21), q^4 - 19*q^6 + 84*q^7 - 188*q^8 + 272*q^9 - 301*q^10 + 364*q^11 - 518*q^12 + 588*q^13 - 348*q^14 - 8*q^15 + 64*q^16 + 140*q^17 - 110*q^18 - 168*q^19 + 105*q^20 + O(q^21), q^5 - 20/3*q^6 + 22*q^7 - 44*q^8 + 59*q^9 - 63*q^10 + 82*q^11 - 392/3*q^12 + 154*q^13 - 82*q^14 - 85/3*q^15 + 32*q^16 + 70*q^17 - 275/3*q^18 - 27*q^19 + 77*q^20 + O(q^21) ]
R.<q> = QQ[['q']] dd=50 sum([sum([(a^2 + a*b - b^2) * q^(2*a^2 + 2*a*b + 3*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^200) print "\n" sum([sum([(a^2 + 0*a*b - b^2) * q^(2*a^2 + 2*a*b + 3*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^200)
2*q^2 - 4*q^3 + 4*q^7 + 8*q^8 - 10*q^10 - 16*q^12 + 20*q^15 + 14*q^18 - 44*q^23 + 8*q^27 + 16*q^28 + 32*q^32 - 20*q^35 - 40*q^40 - 32*q^42 + 76*q^43 + 4*q^47 - 64*q^48 + 50*q^50 - 44*q^58 + 80*q^60 + 28*q^63 - 116*q^67 + 56*q^72 - 100*q^75 + 124*q^82 + 76*q^83 + 88*q^87 - 70*q^90 - 176*q^92 - 66*q^98 - 44*q^103 + 124*q^107 + 32*q^108 + 64*q^112 + 220*q^115 - 116*q^122 - 248*q^123 - 236*q^127 + 128*q^128 - 40*q^135 + 352*q^138 - 80*q^140 + 132*q^147 - 160*q^160 - 190*q^162 - 164*q^163 + 244*q^167 - 128*q^168 + 304*q^172 + 100*q^175 - 284*q^178 + 232*q^183 + 16*q^188 - 256*q^192 + O(q^200) 2*q^2 - 2*q^3 + 6*q^7 + 8*q^8 - 6*q^10 - 8*q^12 + 22*q^15 + 22*q^18 - 26*q^23 + 28*q^27 + 24*q^28 + 32*q^32 - 2*q^35 - 24*q^40 + 8*q^42 + 78*q^43 + 22*q^47 - 32*q^48 + 50*q^50 - 12*q^58 + 88*q^60 + 98*q^63 - 66*q^67 + 88*q^72 - 50*q^75 + 132*q^82 + 94*q^83 + 140*q^87 - 2*q^90 - 104*q^92 + 6*q^98 + 6*q^103 + 142*q^107 + 112*q^108 + 96*q^112 + 222*q^115 - 44*q^122 - 100*q^123 - 138*q^127 + 128*q^128 + 76*q^135 + 392*q^138 - 8*q^140 + 282*q^147 - 96*q^160 + 10*q^162 - 66*q^163 + 262*q^167 + 32*q^168 + 312*q^172 + 150*q^175 - 156*q^178 + 332*q^183 + 88*q^188 - 128*q^192 + O(q^200)
QuadraticField(-5).class_number()
2
BinaryQF_reduced_representatives(-20)
[x^2 + 5*y^2, 2*x^2 + 2*x*y + 3*y^2]
K = QuadraticField(-5) K.class_group().gens()
(Fractional ideal class (2, a + 1),)
M = ModularForms(Gamma1(20),3, prec = 34) dd = 50 cand_mod = sum([sum([(a^2 + a*b - b^2) * q^(2*a^2 + 2*a*b + 3*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^200) maybe_mod = (sum([sum([(a^2 + a*b - b^2) * q^(2*a^2 + 2*a*b + 3*b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(q^200)).list()[0:34]
the_list = [M.basis()[i].padded_list(34) for i in range(len(M.basis()))] the_mat = matrix(the_list).transpose() the_mat_inv = the_mat.inverse() ans = the_mat_inv * matrix([maybe_mod]).transpose() al = ans.list()
MM = ModularForms(Gamma1(20),3, prec = 100) B = MM.basis() yes_mod = sum([al[i] * B[i] for i in range(len(B))]) [yes_mod.padded_list(80)[i] - cand_mod.list()[0:80][i] for i in range(80)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
RR.<Q, A, B > = QQ[['Q, A, B']] sum([sum([(A*a^2 + B * a*b + ((B-2*A)/2)*b^2) * Q^(a^2 + a*b + b^2) for a in range(-10,10)]) for b in range(-10,10)]) + O(Q^50)
0 + O(Q, A, B)^50
R.<Q> = QQ[['Q']] A4 = 3 A5 = 7 A1 = -(1/4)*A4 A2 = -4*A5 A3 = (3/2)*A4 -6*A5 dd=40 sum([sum([(A1*a^4 +A2* a^3*b + A3*a^2*b^2 + A4*a*b^3 + A5*b^4) * Q^(a^2 + a*b + b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(Q^50) sum([sum([(A1*zre(a,b)^4 +A2* zre(a,b)^3*zim(a,b) + A3*zre(a,b)^2*zim(a,b)^2 + A4*zre(a,b)*zim(a,b)^3 + A5*zim(a,b)^4) * Q^(a^2 + a*b + b^2) for a in range(-dd,dd)]) for b in range(-dd,dd)]) + O(Q^50)
O(Q^50) -240*Q - 2160*Q^3 - 3840*Q^4 - 23520*Q^7 - 19440*Q^9 - 34560*Q^12 - 81120*Q^13 - 61440*Q^16 - 173280*Q^19 - 211680*Q^21 - 150000*Q^25 - 174960*Q^27 - 376320*Q^28 - 461280*Q^31 - 311040*Q^36 - 657120*Q^37 - 730080*Q^39 - 887520*Q^43 - 552960*Q^48 - 1728720*Q^49 + O(Q^50)
O(Q^50)
R.<q> = QQ[['q']] (1/22)*sum([sum([(a^2-a*b+b^2)^2 * q^(a^2 + a*b + b^2) for a in range(-30,30)]) for b in range(-30,30)]) + O(q^60)
q + 9*q^3 + 16*q^4 + 98*q^7 + 81*q^9 + 144*q^12 + 338*q^13 + 256*q^16 + 722*q^19 + 882*q^21 + 625*q^25 + 729*q^27 + 1568*q^28 + 1922*q^31 + 1296*q^36 + 2738*q^37 + 3042*q^39 + 3698*q^43 + 2304*q^48 + 7203*q^49 + 5408*q^52 + 6498*q^57 + O(q^60)
M = ModularForms(Gamma1(3),5, prec=50) M.basis()
[ 1 - 90*q^2 - 240*q^3 - 3744*q^5 - 3690*q^6 - 23130*q^8 - 19680*q^9 - 87840*q^11 - 57840*q^12 - 216180*q^14 - 153504*q^15 - 501120*q^17 - 295290*q^18 - 902304*q^20 - 576480*q^21 - 1679040*q^23 - 948330*q^24 - 2570580*q^26 - 1594320*q^27 - 4243680*q^29 - 2246400*q^30 - 5921370*q^32 - 3601440*q^33 - 8993088*q^35 - 4742880*q^36 - 11728980*q^38 - 6854880*q^39 - 16954560*q^41 - 8863380*q^42 - 21169440*q^44 - 12284064*q^45 - 29278080*q^47 - 14803440*q^48 + O(q^50), q + 15*q^2 + 81*q^3 + 241*q^4 + 624*q^5 + 1215*q^6 + 2402*q^7 + 3855*q^8 + 6561*q^9 + 9360*q^10 + 14640*q^11 + 19521*q^12 + 28562*q^13 + 36030*q^14 + 50544*q^15 + 61681*q^16 + 83520*q^17 + 98415*q^18 + 130322*q^19 + 150384*q^20 + 194562*q^21 + 219600*q^22 + 279840*q^23 + 312255*q^24 + 390001*q^25 + 428430*q^26 + 531441*q^27 + 578882*q^28 + 707280*q^29 + 758160*q^30 + 923522*q^31 + 986895*q^32 + 1185840*q^33 + 1252800*q^34 + 1498848*q^35 + 1581201*q^36 + 1874162*q^37 + 1954830*q^38 + 2313522*q^39 + 2405520*q^40 + 2825760*q^41 + 2918430*q^42 + 3418802*q^43 + 3528240*q^44 + 4094064*q^45 + 4197600*q^46 + 4879680*q^47 + 4996161*q^48 + 5767203*q^49 + O(q^50) ]
def zre(x,y) : return -y def zim(x,y) : return x-y