Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.

This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.

2034 views
License: MIT
ubuntu2004
1
// MersenneTwister.h
2
// Mersenne Twister random number generator -- a C++ class MTRand
3
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
4
// Richard J. Wagner v1.0 15 May 2003 [email protected]
5
6
// The Mersenne Twister is an algorithm for generating random numbers. It
7
// was designed with consideration of the flaws in various other generators.
8
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
9
// are far greater. The generator is also fast; it avoids multiplication and
10
// division, and it benefits from caches and pipelines. For more information
11
// see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
12
13
// Reference
14
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
15
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
16
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
17
18
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
19
// Copyright (C) 2000 - 2003, Richard J. Wagner
20
// All rights reserved.
21
//
22
// Redistribution and use in source and binary forms, with or without
23
// modification, are permitted provided that the following conditions
24
// are met:
25
//
26
// 1. Redistributions of source code must retain the above copyright
27
// notice, this list of conditions and the following disclaimer.
28
//
29
// 2. Redistributions in binary form must reproduce the above copyright
30
// notice, this list of conditions and the following disclaimer in the
31
// documentation and/or other materials provided with the distribution.
32
//
33
// 3. The names of its contributors may not be used to endorse or promote
34
// products derived from this software without specific prior written
35
// permission.
36
//
37
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
41
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
42
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
43
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
44
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
45
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
46
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
47
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48
49
// The original code included the following notice:
50
//
51
// When you use this, send an email to: [email protected]
52
// with an appropriate reference to your work.
53
//
54
// It would be nice to CC: [email protected] and [email protected]
55
// when you write.
56
57
#ifndef MERSENNETWISTER_H
58
#define MERSENNETWISTER_H
59
60
// Not thread safe (unless auto-initialization is avoided and each thread has
61
// its own MTRand object)
62
63
#include <iostream>
64
#include <limits.h>
65
#include <stdio.h>
66
#include <time.h>
67
#include <math.h>
68
69
class MTRand {
70
// Data
71
public:
72
typedef unsigned long uint32; // unsigned integer type, at least 32 bits
73
74
enum { N = 624 }; // length of state vector
75
enum { SAVE = N + 1 }; // length of array for save()
76
77
protected:
78
enum { M = 397 }; // period parameter
79
80
uint32 state[N]; // internal state
81
uint32 *pNext; // next value to get from state
82
int left; // number of values left before reload needed
83
84
85
//Methods
86
public:
87
MTRand( const uint32& oneSeed ); // initialize with a simple uint32
88
MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array
89
MTRand(); // auto-initialize with /dev/urandom or time() and clock()
90
91
// Do NOT use for CRYPTOGRAPHY without securely hashing several returned
92
// values together, otherwise the generator state can be learned after
93
// reading 624 consecutive values.
94
95
// Access to 32-bit random numbers
96
double rand(); // real number in [0,1]
97
double rand( const double& n ); // real number in [0,n]
98
double randExc(); // real number in [0,1)
99
double randExc( const double& n ); // real number in [0,n)
100
double randDblExc(); // real number in (0,1)
101
double randDblExc( const double& n ); // real number in (0,n)
102
uint32 randInt(); // integer in [0,2^32-1]
103
uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32
104
double operator()() { return rand(); } // same as rand()
105
106
// Access to 53-bit random numbers (capacity of IEEE double precision)
107
double rand53(); // real number in [0,1)
108
109
// Access to nonuniform random number distributions
110
double randNorm( const double& mean = 0.0, const double& variance = 0.0 );
111
112
// Re-seeding functions with same behavior as initializers
113
void seed( const uint32 oneSeed );
114
void seed( uint32 *const bigSeed, const uint32 seedLength = N );
115
void seed();
116
117
// Saving and loading generator state
118
void save( uint32* saveArray ) const; // to array of size SAVE
119
void load( uint32 *const loadArray ); // from such array
120
friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
121
friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
122
123
protected:
124
void initialize( const uint32 oneSeed );
125
void reload();
126
uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }
127
uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }
128
uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }
129
uint32 mixBits( const uint32& u, const uint32& v ) const
130
{ return hiBit(u) | loBits(v); }
131
uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const
132
{ return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }
133
static uint32 hash( time_t t, clock_t c );
134
};
135
136
137
inline MTRand::MTRand( const uint32& oneSeed )
138
{ seed(oneSeed); }
139
140
inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
141
{ seed(bigSeed,seedLength); }
142
143
inline MTRand::MTRand()
144
{ seed(); }
145
146
inline double MTRand::rand()
147
{ return double(randInt()) * (1.0/4294967295.0); }
148
149
inline double MTRand::rand( const double& n )
150
{ return rand() * n; }
151
152
inline double MTRand::randExc()
153
{ return double(randInt()) * (1.0/4294967296.0); }
154
155
inline double MTRand::randExc( const double& n )
156
{ return randExc() * n; }
157
158
inline double MTRand::randDblExc()
159
{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
160
161
inline double MTRand::randDblExc( const double& n )
162
{ return randDblExc() * n; }
163
164
inline double MTRand::rand53()
165
{
166
uint32 a = randInt() >> 5, b = randInt() >> 6;
167
return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
168
}
169
170
inline double MTRand::randNorm( const double& mean, const double& variance )
171
{
172
// Return a real number from a normal (Gaussian) distribution with given
173
// mean and variance by Box-Muller method
174
double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
175
double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
176
return mean + r * cos(phi);
177
}
178
179
inline MTRand::uint32 MTRand::randInt()
180
{
181
// Pull a 32-bit integer from the generator state
182
// Every other access function simply transforms the numbers extracted here
183
184
if( left == 0 ) reload();
185
--left;
186
187
register uint32 s1;
188
s1 = *pNext++;
189
s1 ^= (s1 >> 11);
190
s1 ^= (s1 << 7) & 0x9d2c5680UL;
191
s1 ^= (s1 << 15) & 0xefc60000UL;
192
return ( s1 ^ (s1 >> 18) );
193
}
194
195
inline MTRand::uint32 MTRand::randInt( const uint32& n )
196
{
197
// Find which bits are used in n
198
// Optimized by Magnus Jonsson ([email protected])
199
uint32 used = n;
200
used |= used >> 1;
201
used |= used >> 2;
202
used |= used >> 4;
203
used |= used >> 8;
204
used |= used >> 16;
205
206
// Draw numbers until one is found in [0,n]
207
uint32 i;
208
do
209
i = randInt() & used; // toss unused bits to shorten search
210
while( i > n );
211
return i;
212
}
213
214
215
inline void MTRand::seed( const uint32 oneSeed )
216
{
217
// Seed the generator with a simple uint32
218
initialize(oneSeed);
219
reload();
220
}
221
222
223
inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
224
{
225
// Seed the generator with an array of uint32's
226
// There are 2^19937-1 possible initial states. This function allows
227
// all of those to be accessed by providing at least 19937 bits (with a
228
// default seed length of N = 624 uint32's). Any bits above the lower 32
229
// in each element are discarded.
230
// Just call seed() if you want to get array from /dev/urandom
231
initialize(19650218UL);
232
register int i = 1;
233
register uint32 j = 0;
234
register int k = ( N > seedLength ? N : seedLength );
235
for( ; k; --k )
236
{
237
state[i] =
238
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
239
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
240
state[i] &= 0xffffffffUL;
241
++i; ++j;
242
if( i >= N ) { state[0] = state[N-1]; i = 1; }
243
if( j >= seedLength ) j = 0;
244
}
245
for( k = N - 1; k; --k )
246
{
247
state[i] =
248
state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
249
state[i] -= i;
250
state[i] &= 0xffffffffUL;
251
++i;
252
if( i >= N ) { state[0] = state[N-1]; i = 1; }
253
}
254
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
255
reload();
256
}
257
258
259
inline void MTRand::seed()
260
{
261
// Seed the generator with an array from /dev/urandom if available
262
// Otherwise use a hash of time() and clock() values
263
264
// First try getting an array from /dev/urandom
265
FILE* urandom = fopen( "/dev/urandom", "rb" );
266
if( urandom )
267
{
268
uint32 bigSeed[N];
269
register uint32 *s = bigSeed;
270
register int i = N;
271
register bool success = true;
272
while( success && i-- )
273
success = fread( s++, sizeof(uint32), 1, urandom );
274
fclose(urandom);
275
if( success ) { seed( bigSeed, N ); return; }
276
}
277
278
// Was not successful, so use time() and clock() instead
279
seed( hash( time(NULL), clock() ) );
280
}
281
282
283
inline void MTRand::initialize( const uint32 seed )
284
{
285
// Initialize generator state with seed
286
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
287
// In previous versions, most significant bits (MSBs) of the seed affect
288
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
289
register uint32 *s = state;
290
register uint32 *r = state;
291
register int i = 1;
292
*s++ = seed & 0xffffffffUL;
293
for( ; i < N; ++i )
294
{
295
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
296
r++;
297
}
298
}
299
300
301
inline void MTRand::reload()
302
{
303
// Generate N new values in state
304
// Made clearer and faster by Matthew Bellew ([email protected])
305
register uint32 *p = state;
306
register int i;
307
for( i = N - M; i--; ++p )
308
*p = twist( p[M], p[0], p[1] );
309
for( i = M; --i; ++p )
310
*p = twist( p[M-N], p[0], p[1] );
311
*p = twist( p[M-N], p[0], state[0] );
312
313
left = N, pNext = state;
314
}
315
316
317
inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
318
{
319
// Get a uint32 from t and c
320
// Better than uint32(x) in case x is floating point in [0,1]
321
// Based on code by Lawrence Kirby ([email protected])
322
323
static uint32 differ = 0; // guarantee time-based seeds will change
324
325
uint32 h1 = 0;
326
unsigned char *p = (unsigned char *) &t;
327
for( size_t i = 0; i < sizeof(t); ++i )
328
{
329
h1 *= UCHAR_MAX + 2U;
330
h1 += p[i];
331
}
332
uint32 h2 = 0;
333
p = (unsigned char *) &c;
334
for( size_t j = 0; j < sizeof(c); ++j )
335
{
336
h2 *= UCHAR_MAX + 2U;
337
h2 += p[j];
338
}
339
return ( h1 + differ++ ) ^ h2;
340
}
341
342
343
inline void MTRand::save( uint32* saveArray ) const
344
{
345
register uint32 *sa = saveArray;
346
register const uint32 *s = state;
347
register int i = N;
348
for( ; i--; *sa++ = *s++ ) {}
349
*sa = left;
350
}
351
352
353
inline void MTRand::load( uint32 *const loadArray )
354
{
355
register uint32 *s = state;
356
register uint32 *la = loadArray;
357
register int i = N;
358
for( ; i--; *s++ = *la++ ) {}
359
left = *la;
360
pNext = &state[N-left];
361
}
362
363
364
inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
365
{
366
register const MTRand::uint32 *s = mtrand.state;
367
register int i = mtrand.N;
368
for( ; i--; os << *s++ << "\t" ) {}
369
return os << mtrand.left;
370
}
371
372
373
inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
374
{
375
register MTRand::uint32 *s = mtrand.state;
376
register int i = mtrand.N;
377
for( ; i--; is >> *s++ ) {}
378
is >> mtrand.left;
379
mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
380
return is;
381
}
382
383
#endif // MERSENNETWISTER_H
384
385
// Change log:
386
//
387
// v0.1 - First release on 15 May 2000
388
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
389
// - Translated from C to C++
390
// - Made completely ANSI compliant
391
// - Designed convenient interface for initialization, seeding, and
392
// obtaining numbers in default or user-defined ranges
393
// - Added automatic seeding from /dev/urandom or time() and clock()
394
// - Provided functions for saving and loading generator state
395
//
396
// v0.2 - Fixed bug which reloaded generator one step too late
397
//
398
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
399
//
400
// v0.4 - Removed trailing newline in saved generator format to be consistent
401
// with output format of built-in types
402
//
403
// v0.5 - Improved portability by replacing static const int's with enum's and
404
// clarifying return values in seed(); suggested by Eric Heimburg
405
// - Removed MAXINT constant; use 0xffffffffUL instead
406
//
407
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
408
// - Changed integer [0,n] generator to give better uniformity
409
//
410
// v0.7 - Fixed operator precedence ambiguity in reload()
411
// - Added access for real numbers in (0,1) and (0,n)
412
//
413
// v0.8 - Included time.h header to properly support time_t and clock_t
414
//
415
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
416
// - Allowed for seeding with arrays of any length
417
// - Added access for real numbers in [0,1) with 53-bit resolution
418
// - Added access for real numbers from normal (Gaussian) distributions
419
// - Increased overall speed by optimizing twist()
420
// - Doubled speed of integer [0,n] generation
421
// - Fixed out-of-range number generation on 64-bit machines
422
// - Improved portability by substituting literal constants for long enum's
423
// - Changed license from GNU LGPL to BSD
424
425
426