A (one dimensional) cellular automaton is a function1 F : Σ → Σ with the property that there is a K > 0 such that F (x)i depends only on the 2K + 1 coordinates xi−K , xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K . A periodic point of σ is any x such that σ^p (x) = x for some p ∈ N, and a periodic point of F is any x such that F^q (x) = x for some q ∈ N. Given a cellular automaton F, a point x ∈ Σ is jointly periodic if there are p, q ∈ N such that σ^p (x) = F^q (x) = x, that is, it is a periodic point under both functions.
This project aims to explore the nature of one-dimensional Cellular Automata, in the hope of finding the structure of cellular automata through its periodic points.
License: MIT
ubuntu2004
11913610175290432170, open and surjective112273810184465984170, open and surjective210778685752149174890, open and surjective39838244740979984520,49833478358074685320,59765923332887705720,613527612318716019780,715987178194065302050,812297829015969158570, open and surjective96149008516228754090,108608480568017455240,119761684715563616120,1211067990149230388838,1312273810549538182570,1411936045731524794970,156531808643310593370,1618446744069414584320, injective, open, and surjective1718446462603027742720, injective, open, and surjective1818374966859414961920, injective, open, and surjective1917361641481138401520, injective, open, and surjective2014757395258967641292, injective, open, and surjective2112297829382473034410, injective, open, and surjective2212297735558912453290,2312273904009452628650,2411913616039262988970,2510760694534656141994,2612273810549532633770,2712273810550964267690,2812297735922558610090,2912297735923984673450,3011937535914725255850,3111914929955658181290,3211053616526923573930,3311072831592130587306,3411915017572991019690,3512273903644380408490,3612297829381046949290,3711915017571643578970,3811053691000511161958,3911937535913383058090,4011072831590989719210,4110766582143467022954,4211936128518366866090,4311936045731440601770,4411915017571564934570,4512297829381125593690,4610851025924903036518,4711936045732872235690,4810851025926048361130,4912297741076598008490,5010850959696507349674,5112275311039396600490,5210834137168606815914,5311140386616255343210,5411068046444512062122,5511067990148944079530,5611053691000230401450,5710851025924700920410,5812297829381327709798,5911067990150375713450,6011053691001656486570,6111053634925137406634,6210850972941984377514,6312297754322479262378,6410837514919665621674,6512278688790858065578,6612008468690110147178,676149102339789291520,686196766168842283520,696872316420712079520,7012297923204601937920,7112273717456122085120,7211935962946030203120,7311067933855094066380,7412249885541595589120,7512321755119128433920,7611893906626277563120,7711039335557662271180,7818398892593240473770,7918446556422293465770,8011574355905568809120,8111556131500342665120,8212659530245063331920,8310634005406540393580,8417723342341370677770,859833459666377017480,869765905671982188680,8713527537259867572360,8815987065605792630920,899761419664541907080,9013508471728246375560,9115958467308360835720,9213238251627498457160,9315553137157238958120,949761402072355866760,9513508396961455704200,9615958355158174828680,9713238180983876389000,9815553031191805855880,9918446593951717689480100101001010101010110100101010101010101101010101010010110101010101010110101010010101010101010101010101010101011010101010101010101010101021001010110010101100101011001010101101010011010100110101001101010103100010001000100001110111011101110111011101110111100010001000100010410001000011101111000100001110111011101111000100001110111100010001051000011110000111100001111000011101111000011110000111100001111000106101110111011101110111011101110110100010001000100010001000100010010711011101110111011101110111011101001000100010001000100010001000101081010101010101010101010100101010101010101010101010101010110101010109010101010101010110101010101010101010101010101010101010101010101011001110111011101110111011101110111100010001000100010001000100010001111000011101111000011110001000011101111000100001111000011101111000112100110011001100101100110011001100110011001100110011001100110011011310101010010101010101010110101010010101011010101001010101101010101141010010110100101010110100101101001011010010110100101101001011010115010110101010010110100101010110101010010101011010101001010101101011611111111111111111111111111111111000000000000000000000000000000001171111111111111111000000000000000011111111111111110000000000000000118111111110000000011111111000000001111111100000000111111110000000011911110000111100001111000011110000111100001111000011110000111100001201100110011001100110011001100110011001100110011001100110011001100121101010101010101010101010101010101010101010101010101010101010101012210101010101010100101010101010101101010101010101010101010101010101231010101001010101101010101010101010101010101010101010101010101010124101001010101010110101010101010101010101010101010101010101010101012510010101010101011010101010101010101010101010101010101010101010101261010101001010101010101011010101001010101010101011010101010101010127101010100101010101010101101010101010101010101010101010101010101012810101010101010100101010110101010010101011010101010101010101010101291010101010101010010101011010101010101010101010101010101010101010130101001011010101010100101101010101010101010101010101010101010101013110100101010110100101010110101010101010101010101010101010101010101321001100101100110010101011010101010101010101010101010101010101010133100110011010101010011001101010101010101010101010101010101010101013410100101010110101010010101011010101010101010101010101010101010101351010101001010101101010100101010110101010101010101010101010101010136101010101010101010101010101010100101010110101010010101011010101013710100101010110101010010101011010010110100101101001011010010110101381001100101100110100110010110011001100110011001100110011001100110139101001011010101010100101101010100101101010101010010110101010101014010011001101010101001100110101010011001101010101001100110101010101411001010101101010100101010110101001101010011010100110101001101010142101001011010010110100101101001011010101010101010101010101010101014310100101101001010101101001011010010101010101010110101010101010101441010010101011010101001010101101001010101101010100101010110101010145101010101010101010101010101010100101101001011010010110100101101014610010110100101101001011010010110011001100110011001100110011001101471010010110100101010110100101101010101010101010101010101010101010148100101101001011010010110100101101010101010101010101010101010101014910101010101010100101101001011010010110100101101010101010101010101501001011010010110010110100101101001100110011001101010101010101010151101010100101101010101010010110100101101010101010010110101010101015210010110010110101001011001011010011001101010101001100110101010101531001101010011010100110101001101001101010011010100110101001101010154100110011001100110011001100110011010101010101010101010101010101015510011001100110010110011001100110010101010101010110101010101010101561001100101100110100110010110011001010101101010100101010110101010157100101101001011010010110100101100101101001011010010110100101101015810101010101010101010101010101010011001100110011001100110011001101591001100110011001011001100110011010101010101010101010101010101010160100110010110011010011001011001101010101010101010101010101010101016110011001011001100110011001100110010101011010101010101010101010101621001011010010110011001100110011001011010010110101010101010101010163101010101010101001100110011001100110011001100110101010101010101016410010110011001101001011001100110010110101010101001011010101010101651010101001100110101010100110011001100110101010100110011010101010166101001101010011010100110101001100110101001101010011010100110101016701010101010101011111111111111111101010101010101000000000000000001680101010111111111010101011111111110101010000000001010101000000000169010111110101111101011111010111111010000010100000101000001010000017010101010101010101111111111111111010101010101010100000000000000001711010101001010101000000001111111101010101101010101111111100000000172101001011010010100001111000011110101101001011010111100001111000017310011001100110010011001100110011011001100110011011001100110011001741010101000000000010101011111111101010101111111111010101000000000175101010101111111110101010111111110101010100000000010101010000000017610100101000011111010010100001111010110101111000001011010111100001771001100100110011100110010011001101100110110011000110011011001100178111111110101010111111111010101010000000010101010000000001010101017911111111111111110101010101010101000000000000000010101010101010101801010000010100000010111110101111101011111010111111010000010100000181101000000101111110100000010111110101111110100000010111111010000018210101111101011111010111110101111010100000101000001010000010100001831001001110010011100100111001001101101100011011000110110001101100184111101011111010111110101111101010000101000001010000010100000101018510001000011101110111011101110111011101111000100010001000100010001861000011110000111011101110111011101111000011110001000100010001000187101110111011101101110111011101110100010001000100100010001000100018811011101110111010111011101110111001000100010001010001000100010001891000011101110111100001110111011101111000100010000111100010001000190101110110111011110111011011101110100010010001000010001001000100019111011101011101111101110101110111001000101000100000100010100010001921011011110110111101101111011011101001000010010000100100001001000193110101111101011111010111110101110010100000101000001010000010100019410000111011101110111011101110111011110001000100010001000100010001951011101101110111011101110111011101000100100010001000100010001000196110111010111011101110111011101110010001010001000100010001000100019710110111101101110111011101110111010010000100100010001000100010001981101011111010111011101110111011100101000001010001000100010001000199111111111111111101110111011101110000000000000000100010001000100020011913610175290432170,20112273810184465984170,20210778685752149174890,2039838244740979984520,2049833478358074685320,2059765923332887705720,20613527612318716019780,20715987178194065302050,20812297829015969158570,2096149008516228754090,2108608480568017455240,2119761684715563616120,21211067990149230388838,21312273810549538182570,21411936045731524794970,2156531808643310593370,21618446744069414584320,21718446462603027742720,21818374966859414961920,21917361641481138401520,22014757395258967641292,22112297829382473034410,22212297735558912453290,22312273904009452628650,22411913616039262988970,22510760694534656141994,22612273810549532633770,22712273810550964267690,22812297735922558610090,22912297735923984673450,23011937535914725255850,23111914929955658181290,23211053616526923573930,23311072831592130587306,23411915017572991019690,23512273903644380408490,23612297829381046949290,23711915017571643578970,23811053691000511161958,23911937535913383058090,24011072831590989719210,24110766582143467022954,24211936128518366866090,24311936045731440601770,24411915017571564934570,24512297829381125593690,24610851025924903036518,24711936045732872235690,24810851025926048361130,24912297741076598008490,25010850959696507349674,25112275311039396600490,25210834137168606815914,25311140386616255343210,25411068046444512062122,25511067990148944079530,25611053691000230401450,25710851025924700920410,25812297829381327709798,25911067990150375713450,26011053691001656486570,26111053634925137406634,26210850972941984377514,26312297754322479262378,26410837514919665621674,26512278688790858065578,26612008468690110147178,2676149102339789291520,2686196766168842283520,2696872316420712079520,27012297923204601937920,27112273717456122085120,27211935962946030203120,27311067933855094066380,27412249885541595589120,27512321755119128433920,27611893906626277563120,27711039335557662271180,27818398892593240473770,27918446556422293465770,28011574355905568809120,28111556131500342665120,28212659530245063331920,28310634005406540393580,28417723342341370677770,2859833459666377017480,2869765905671982188680,28713527537259867572360,28815987065605792630920,2899761419664541907080,29013508471728246375560,29115958467308360835720,29213238251627498457160,29315553137157238958120,2949761402072355866760,29513508396961455704200,29615958355158174828680,29713238180983876389000,29815553031191805855880,29918446593951717689480,300301302303304305306307308309310311