Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
193 views
Kernel: SageMath (stable)
Melanie Siebenhofer, Jänner 2018

Asymptotische Grenzverteilung

alt text

Baum 1

s0+s1+s2+s3=10s010s110s210s31 2s0+2s1+2s2+2s3cs2+s3+1s0s1+s2+1s0s1+s2+1s3s0+s1+1s3\begin{align*} s_0 + s_1 + s_2 + s_3 &= 1\\ 0 \leq s_0 &\leq 1\\ 0 \leq s_1 &\leq 1\\ 0 \leq s_2 &\leq 1\\ 0 \leq s_3 &\leq 1\\ \ \\ 2\cdot s_0 + 2 \cdot s_1 + 2\cdot s_2 + 2 \cdot s_3 &\leq c\\ s_2 + s_3 + 1 &\geq s_0\\ s_1 + s_2 + 1 &\geq s_0\\ s_1 + s_2 + 1 &\geq s_3\\ s_0 + s_1 + 1 &\geq s_3\\ \end{align*}

asymptotisch: s0+s1+s2+s3=10s010s110s210s31 2s0+2s1+2s2+2s3cs0s2+s3s0s1+s2s3s1+s2s3s0+s1\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 & \leq 1\\ 0 \leq s_1 & \leq 1\\ 0 \leq s_2 & \leq 1\\ 0 \leq s_3 & \leq 1\\ \ \\ 2\cdot s_0 + 2 \cdot s_1 + 2\cdot s_2 + 2 \cdot s_3 \leq & c\\ s_0 \leq & s_2 + s_3 \\ s_0 \leq & s_1 + s_2 \\ s_3 \leq & s_1 + s_2 \\ s_3 \leq & s_0 + s_1 \\ \end{align*}

from sage.symbolic.relation import solve_ineq
forget() var('s0,s1,s2,s3,c')
(s0, s1, s2, s3, c)
assume(0 <= s0) assume(s0 <= 1) assume(0 <= s1) assume(s1 <= 1) assume(0 <= s2) assume(s2 <= 1) assume(0 <= s3) assume(s3 <= 1)

setze s0=1s1s2s3s_0 = 1 - s_1 - s_2 - s_3

s0 = 1 - s1 - s2 - s3

forme Ungleichungen, die s0s_0 enthalten, um

2*s0 + 2*s1 + 2*s2 + 2*s3 <= c
2 <= c
solve_ineq([s0 <= s2 + s3],[s3,s2,s1])
[[s3 == -1/2*s1 - s2 + 1/2], [-1/2*s1 - s2 + 1/2 < s3]]
solve_ineq([s0 <= s1 + s2],[s3,s2,s1])
[[s3 == -2*s1 - 2*s2 + 1], [-2*s1 - 2*s2 + 1 < s3]]
solve_ineq([s3 <= s0 + s1],[s3,s2,s1])
[[s3 == -1/2*s2 + 1/2], [s3 < -1/2*s2 + 1/2]]
2cs0=1s1s2s301s1s2s310s110s210s311212s1s2s312s12s2s3s3s1+s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq 1 - s_1 - s_2 - s_3 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Forme 3. Zeile um:

solve_ineq([0 <= 1 - s1 - s2 - s3],[s3,s2,s1])
[[s3 == -s1 - s2 + 1], [s3 < -s1 - s2 + 1]]
bool(1 - s1 - s2 - s3 <= 1)
True
2cs0=1s1s2s30s110s210s311212s1s2s312s12s2s3s3s1+s2s31212s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

prüfe Grenzen für s3s_3

bool(0 <= s1 + s2)
True
bool(0 <= 1/2 - s2/2)
True
solve_ineq([0 <= 1 - s1 - s2],[s2,s1])
[[s2 == -s1 + 1], [s2 < -s1 + 1]]
solve_ineq([1/2 - s1/2 - s2 <= s1 + s2],[s2,s1])
[[s2 == -3/4*s1 + 1/4], [-3/4*s1 + 1/4 < s2]]
bool(1/2 - s1/2 - s2 <= 1/2 - s2/2)
True
bool(1/2 - s1/2 - s2 <= 1 - s1 - s2)
True
solve_ineq([1 - 2*s1 - 2*s2 <= s1 + s2],[s2,s1])
[[s2 == -s1 + 1/3], [-s1 + 1/3 < s2]]
solve_ineq([1 - 2*s1 - 2*s2 <= 1/2 - s2/2],[s2,s1])
[[s2 == -4/3*s1 + 1/3], [-4/3*s1 + 1/3 < s2]]
bool(1 - 2*s1 - 2*s2 <= 1 - s1 - s2)
True
2cs0=1s1s2s30s110s21s11434s1s213s1s21343s1s20s31s1s21212s1s2s312s12s2s3s3s1+s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{4}{3}s_1 \leq s_2 \quad &&\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

prüfe Grenzen für s2s_2:

bool(0 <= 1 - s1)
True
bool(1/4 - 3*s1/4 <= 1 - s1)
True
bool(1/3 - s1 <= 1 - s1)
True
bool(1/3 - 4*s1/3 <= 1 - s1)
True
bool(1/3 - s1 >= 1/3 - 4/3*s1)
True
2cs0=1s1s2s30s110s21s11434s1s213s1s20s31s1s21212s1s2s312s12s2s3s3s1+s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \quad &\\ 1 - 2s_1 - 2 s_2 \leq s_3 \quad &\\ s_3 \leq & s_1 + s_2\\ s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Grenzen für s3

obere Grenze

solve_ineq([1 - s1 - s2 <= s1 + s2],[s2,s1])
[[s2 == -s1 + 1/2], [-s1 + 1/2 < s2]]
solve_ineq([1 - s1 - s2 <= 1/2 - s2/2],[s2,s1])
[[s2 == -2*s1 + 1], [-2*s1 + 1 < s2]]
solve_ineq([s1 + s2 <= 1/2 - s2/2],[s2,s1])
[[s2 == -2/3*s1 + 1/3], [s2 < -2/3*s1 + 1/3]]
\qquad \mathbf{\leq} \qquad \quad1s1s2\mathbf{1-s_1-s_2}s1+s2\mathbf{s_1 + s_2}1212s2\mathbf{\frac{1}{2} - \frac{1}{2} s_2 \quad}
1s1s2\mathbf{1 - s_1 - s_2}immer \qquad \qquad12s1s2{\frac{1}{2}-s_1\leq s_2}12s1s2{1 - 2s_1 \leq s_2}
s1+s2\mathbf{s_1 + s_2}s212s1{s_2 \leq \frac{1}{2} - s_1}immer \qquad \qquads21323s1{s_2 \leq \frac{1}{3}-\frac{2}{3}s_1}
1212s2\mathbf{\frac{1}{2}-\frac{1}{2}s_2}s212s1{s_2 \leq 1 - 2s_1 }1323s1s2{\frac{1}{3}-\frac{2}{3}s_1 \leq s_2}immer \qquad \qquad
solve_ineq([1/2 - s1 >= 1 - 2*s1],[s2,s1])
[[s1 == (1/2)], [(1/2) < s1]]
solve_ineq([1/2 - s1 <= 1/3 - 2*s1/3],[s2,s1])
[[s1 == (1/2)], [(1/2) < s1]]
solve_ineq(1/3-2*s1/3<=1-2*s1)
[[s1 <= (1/2)]]

obere Grenze:

obere Grenze \quadim Fall \qquad \qquad \qquad \qquad \quad
1s1s2\mathbf{1-s_1-s_2}12s1s2{1-2s_1 \leq s_2} und s112s_1 \leq \frac{1}{2}
1s1s2\mathbf{1-s_1-s_2}12s1s2{\frac{1}{2}-s_1 \leq s_2} und 12s1\frac{1}{2} \leq s_1
s1+s2\mathbf{s_1 + s_2}s21323s1{s_2 \leq \frac{1}{3} - \frac{2}{3}s_1} und s112{s_1 \leq \frac{1}{2}}
s1+s2\mathbf{s_1 + s_2}s212s1{s_2 \leq \frac{1}{2} - s_1} und 12s1{\frac{1}{2} \leq s_1}
1212s2\mathbf{\frac{1}{2} - \frac{1}{2}s_2}1323s1s212s1{\frac{1}{3}-\frac{2}{3}s_1 \leq s_2 \leq 1 - 2s_1} und s112s_1 \leq \frac{1}{2}

Fall 4 ergibt eine Nullmenge, da 0s20 \leq s_2 und damit:

solve_ineq(0 <= 1/2 - s1)
[[s1 <= (1/2)]]

neue obere Grenzen:

obere Grenze \quadim Fall \qquad \qquad \qquad \qquad \quad
1s1s2\mathbf{1-s_1-s_2}12s1s2{1-2s_1 \leq s_2} und s112s_1 \leq \frac{1}{2}
1s1s2\mathbf{1-s_1-s_2}12s1s2{\frac{1}{2}-s_1 \leq s_2} und 12s1\frac{1}{2} \leq s_1
s1+s2\mathbf{s_1 + s_2}s21323s1{s_2 \leq \frac{1}{3} - \frac{2}{3}s_1} und s112{s_1 \leq \frac{1}{2}}
1212s2\mathbf{\frac{1}{2} - \frac{1}{2}s_2}1323s1s212s1{\frac{1}{3}-\frac{2}{3}s_1 \leq s_2 \leq 1 - 2s_1} und s112s_1 \leq \frac{1}{2}

untere Grenze

solve_ineq([0 >= 1/2 - s1/2 - s2],[s2,s1])
[[s2 == -1/2*s1 + 1/2], [-1/2*s1 + 1/2 < s2]]
solve_ineq([0 >= 1 - 2*s1 - 2*s2],[s2,s1])
[[s2 == -s1 + 1/2], [-s1 + 1/2 < s2]]
solve_ineq([1/2 - s1/2 - s2 >= 1 - 2*s1 - 2*s2],[s2,s1])
[[s2 == -3/2*s1 + 1/2], [-3/2*s1 + 1/2 < s2]]
\qquad \mathbf{\geq} \qquad \qquad0\mathbf{0}1212s1s2\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}12s12s2\mathbf{1 - 2s_1 - 2s_2}
0\mathbf{0}immer \qquad \qquad1212s1s2{\frac{1}{2}-\frac{1}{2}s_1 \leq s_2}12s1s2{\frac{1}{2}-s_1\leq s_2}
1212s1s2\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}s21212s1{s_2 \leq \frac{1}{2}-\frac{1}{2}s_1}immer \qquad \qquad1232s1s2{\frac{1}{2}-\frac{3}{2}s_1 \leq s_2}
12s12s2\mathbf{1 - 2s_1 - 2s_2}s212s1{s_2 \leq \frac{1}{2} - s_1}s21232s1{s_2 \leq \frac{1}{2}-\frac{3}{2}s_1}immer \qquad \qquad
bool(1/2 - s1/2 >= 1/2 - s1)
True
bool(1/2 - 3*s1/2 <= 1/2 - s1/2)
True
bool(1/2 - 3/2*s1 <= 1/2 -s1)
True

untere Grenze:

untere Grenze \quadim Fall \qquad \qquad \qquad \qquad \quad
0\mathbf{0}1212s1s2{\frac{1}{2}-\frac{1}{2}s_1 \leq s_2}
1212s1s2\mathbf{\frac{1}{2} - \frac{1}{2}s_1 - s_2}1232s1s21212s1{\frac{1}{2}-\frac{3}{2}s_1 \leq s_2 \leq \frac{1}{2}-\frac{1}{2}s_1}
12s12s2\mathbf{1 - 2s_1 - 2s_2}s21232s1{s_2 \leq \frac{1}{2}-\frac{3}{2}s_1}

Fall 1

untere Grenze: 00

obere Grenze: 1s1s21 - s_1 - s_2 und s112s_1 \leq \frac{1}{2}

2cs0=1s1s2s30s112(neu)0s21s112s1s2(neu)1212s1s2(neu)1434s1s213s1s20s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ 1-2\cdot s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

prüfe Grenzen für s2s_2

bool(1-2*s1 <= 1 - s1)
True
bool(1/2 - s1/2 <= 1 - s1)
True
bool(0 <= 1/2 - 1/2*s1)
True
bool(1/4 - 3*s1/4 <= 1/2 - 1/2*s1)
True
bool(1/3 - s1 <= 1/2 - 1/2*s1)
True
2cs0=1s1s2s30s11212s1s21s11212s1s20s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \\ 1-2\cdot s_1 \leq s_2 \leq & 1 - s_1\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
solve_ineq(1-2*s1 >= 1/2 - s1/2)
[[s1 <= (1/3)]]

2cs0=1s1s2s30s11312s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 1 - 2 \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

2cs0=1s1s2s313s1121212s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{2} - \frac{1}{2} \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Fall 2

untere Grenze: 00

obere Grenze: 1s1s21 - s_1 - s_2 und 12s1\frac{1}{2} \leq s_1

2cs0=1s1s2s312s11(neu)0s21s112s1s2(neu)1212s1s2(neu)1434s1s213s1s20s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
bool(1/2 - s1 <= 1 - s1)
True
bool(1/2 - s1/2 <= 1 - s1)
True

untere Grenze für s2s_2

bool(0 <= 1/2 - s1/2)
True
bool(1/2 - s1 <= 1/2 - s1/2)
True
bool(1/4 - 3*s1/4 <= 1/2 - s1/2)
True
bool(1/3 - s1 <= 1/2 - s1/2)
True

2cs0=1s1s2s312s111212s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Fall 3

untere Grenze: 00

obere Grenze: s1+s2s_1 + s_2

2cs0=1s1s2s30s112(neu)0s21s1s21323s1(neu)1212s1s2(neu)1434s1s213s1s20s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm{(neu)} \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Dieser Fall ist eine Nullmenge, da für die Grenzen von s2s_2 gilt:

solve_ineq(1/2 - 1/2*s1 <= 1/3 - 2/3*s1)
[[s1 <= -1]]

Fall 4

untere Grenze: 00

obere Grenze: 1212s2\frac{1}{2} - \frac{1}{2}s_2

2cs0=1s1s2s30s112(neu)0s21s11323s1s212s1(neu)1212s1s2(neu)1434s1s213s1s20s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm(neu)\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \textrm(neu) \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}

Prüfe Grenzen für s2s_2:

bool(1-2*s1 <= 1 - s1)
True
solve_ineq(0 <= 1 - 2*s1)
[[s1 <= (1/2)]]
solve_ineq(1/3-2/3*s1 <= 1 - 2*s1)
[[s1 <= (1/2)]]
solve_ineq(1/2 - s1/2 <= 1 - 2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1)
[[s1 <= (3/5)]]
bool(1/3 <= 3/5)
True
solve_ineq(1/3 - s1 <= 1 - 2*s1)
[[s1 <= (2/3)]]
2cs0=1s1s2s30s1130s212s11323s1s21212s1s21434s1s213s1s20s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 0 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \quad & \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}

Finde untere Grenze für s2s_2:

bool(0 <= 1/2 - s1/2)
True
bool(1/3 - 2*s1/3 <= 1/2 - s1/2)
True
bool(1/4 - 3*s1/4 <= 1/2 - s1/2)
True
bool(1/3 - s1 <= 1/2 - s1/2)
True

2cs0=1s1s2s30s1131212s1s212s10s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - 2 s_1\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}

Fall 5

untere Grenze: 1212s1s2\frac{1}{2} - \frac{1}{2}s_1 - s_2

obere Grenze: 1s1s21 - s_1 - s_2 und s112s_1 \leq \frac{1}{2}

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s21232s1s21212s1(neu)12s1s2(neu)1212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ 1 - 2 s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

prüfe Grenzen für s2s_2

bool(0 <= 1/2 - s1/2)
True
bool(1/4 - 3/4*s1 <= 1/2 - s1/2)
True
bool(1/3 - s1 <= 1/2 - s1/2)
True
bool(1/2 - 3/2*s1 <= 1 - s1)
True
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
True
bool(1 - 2*s1 <= 1 - s1)
True
solve_ineq(1 - 2*s1 <= 1/2 - 1/2*s1)
[[s1 >= (1/3)]]
bool(1/2 - s1/2 <= 1 - s1)
True
2cs0=1s1s2s313s1120s21212s11434s1s213s1s21232s1s212s1s21212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ 1 - 2 s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

finde untere Grenze für s2s_2

solve_ineq(0 <= 1 - 2*s1) #true
[[s1 <= (1/2)]]
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1) #true
[[s1 <= (3/5)]]
bool(3/5 >= 1/2)
True
solve_ineq(1/3 - s1 <= 1 - 2*s1) #true
[[s1 <= (2/3)]]
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
True

2cs0=1s1s2s313s11212s1s21212s11212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 1 - 2s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Fall 6

untere Grenze: 1212s1s2\frac{1}{2} - \frac{1}{2}s_1 - s_2

obere Grenze: 1s1s21 - s_1 - s_2 und 12s1\frac{1}{2} \leq s_1

2cs0=1s1s2s312s11(neu)0s21s11434s1s213s1s212s1s2(neu)1232s1s21212s1(neu)1212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
bool(1/2 - s1/2 <= 1 - s1)
True

prüfe Grenzen für s2s_2

bool(0 <= 1/2 - 1/2*s1)
True
bool(1/4 - 3/4*s1 <= 1/2 - 1/2*s1)
True
bool(1/3 - s1 <= 1/2 - s1/2)
True
bool(1/2 - s1 <= 1/2 - s1/2)
True
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
True
2cs0=1s1s2s312s110s21212s11434s1s213s1s212s1s21232s1s21212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Finde untere Grenze für s2s_2

solve_ineq(1/4 - 3/4 *s1 <= 0) #true
[[s1 >= (1/3)]]
solve_ineq(1/3 - s1 <= 0) #true
[[s1 >= (1/3)]]
solve_ineq(1/2 - s1 <= 0) #true
[[s1 >= (1/2)]]
solve_ineq(1/2 - 3/2*s1 <= 0) #true
[[s1 >= (1/3)]]

2cs0=1s1s2s312s110s21212s11212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Fall 7

untere Grenze: 1212s1s2\frac{1}{2} - \frac{1}{2}s_1 - s_2

obere Grenze: s1+s2s_1 + s_2

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s21232s1s21212s1(neu)s21323s1(neu)1212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Bestimme obere Grenze für s2s_2:

bool(1/3 - 2/3*s1 <= 1/2 - 1/2*s1)
True
bool(1/3 - 2/3*s1 <= 1 - s1)
True

Prüfe Grenzen für s2s_2:

solve_ineq(0 <= 1/3 - 2/3*s1) #true
[[s1 <= (1/2)]]
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
True
bool(1/3 - s1 <= 1/3 - 2/3 *s1)
True
solve_ineq(1/2 - 3/2*s1 <= 1/3 - 2/3 *s1)
[[s1 >= (1/5)]]
2cs0=1s1s2s315s1120s21323s11434s1s213s1s21232s1s21212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Bestimme untere Grenze für s2s_2:

solve_ineq(0 >= 1/4 - 3/4*s1)
[[s1 >= (1/3)]]
solve_ineq(0 >= 1/3 - s1)
[[s1 >= (1/3)]]
solve_ineq(0 >= 1/2 - 3/2*s1)
[[s1 >= (1/3)]]
solve_ineq(1/2 - 3/2*s1 >= 0)
[[s1 <= (1/3)]]
solve_ineq(1/2 - 3/2*s1 >= 1/4 - 3/4*s1)
[[s1 <= (1/3)]]
solve_ineq(1/2 - 3/2*s1 >= 1/3 - s1)
[[s1 <= (1/3)]]

2cs0=1s1s2s313s1120s21323s11212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

2cs0=1s1s2s315s1131232s1s21323s11212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Fall 8

untere Grenze: 1212s1s2\frac{1}{2} - \frac{1}{2}s_1 - s_2

obere Grenze: 1212s2\frac{1}{2} - \frac{1}{2}s_2

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s21323s1s212s1(neu)1232s1s21212s1(neu)1212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm{(neu)}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \quad \textrm{(neu)} \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Prüfe Grenzen für s2s_2:

solve_ineq(1/2 - 1/2*s1 <= 1 - 2*s1)
[[s1 <= (1/3)]]
bool(0 <= 1/2 - 1/2*s1)
True
solve_ineq(0 <= 1 - 2*s1) #true
[[s1 <= (1/2)]]
solve_ineq(1/4 - 3/4*s1 <= 1 - 2*s1) #true (1/2 <= 3/5)
[[s1 <= (3/5)]]
bool(1/4 - 3/4*s1 <= 1/2 - 1/2*s1)
True
solve_ineq(1/3 - s1 <= 1- 2*s1) #true (1/2 <= 2/3)
[[s1 <= (2/3)]]
bool(1/3 - s1 <= 1/2 - 1/2*s1)
True
solve_ineq(1/3 - 2/3*s1 <= 1 - 2*s1) #true
[[s1 <= (1/2)]]
bool(1/3 - 2/3*s1 <= 1/2 - 1/2*s1)
True
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
True
bool(1/2 - 3/2*s1 <= 1/2 - 1/2*s1)
True

Fall 1 (obere Grenze 12s11 - 2s_1): 2cs0=1s1s2s313s1120s212s11434s1s213s1s21323s1s21232s1s21212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Bestimme untere Grenze für s2s_2:

solve_ineq(0 <= 1/3 - 2/3*s1) #true
[[s1 <= (1/2)]]
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
True
bool(1/3 - s1 <= 1/3 - 2/3*s1)
True
solve_ineq(1/2 - 3/2*s1 <= 1/3 - 2/3*s1) #true
[[s1 >= (1/5)]]

2cs0=1s1s2s313s1121323s1s212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Fall 2 (obere Grenze 1212s1\frac{1}{2} - \frac{1}{2} s_1): 2cs0=1s1s2s30s1130s21212s11434s1s213s1s21323s1s21232s1s21212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \quad & \\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Bestimme untere Grenze für s2s_2:

solve_ineq(0 <= 1/3 - 2/3*s1) #true
[[s1 <= (1/2)]]
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
True
bool(1/3 - s1 <= 1/3 - 2/3*s1)
True
solve_ineq(0 <= 1/2 - 3/2*s1) #true
[[s1 <= (1/3)]]
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1) #true
[[s1 <= (1/3)]]
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1) #true
[[s1 <= (1/3)]]
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/5)]]

2cs0=1s1s2s30s1151232s1s21212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

--- 2cs0=1s1s2s315s1131323s1s21212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}


Fall 9

untere Grenze: 12s12s21 - 2s_1 - 2s_2

obere Grenze: 1s1s21 - s_1 - s_2 und s112s_1 \leq \frac{1}{2}

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s212s1s2(neu)s21232s1(neu)12s12s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ 1 - 2 s_1 \leq s_2 \quad & \textrm{(neu)} \\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Dieser Fall ist eine Nullmenge, da für die Grenzen von s2s_2 gilt:

solve_ineq(1 - 2*s1 <= 1/2 - 3/2*s1)
[[s1 >= 1]]

Fall 10

untere Grenze: 12s12s21 - 2s_1 - 2s_2

obere Grenze: 1s1s21 - s_1 - s_2 und 12s1\frac{1}{2} \leq s_1

2cs0=1s1s2s312s11(neu)0s21s11434s1s213s1s212s1s2(neu)s21232s1(neu)12s12s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{2} - s_1 \leq s_2 \quad & \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}

Dieser Fall ist eine Nullmenge, da für die Grenzen von s2s_2 gilt:

solve_ineq(1/2 - s1 <= 1/2 - 3/2*s1) #false
[[s1 <= 0]]

Fall 11

untere Grenze: 12s12s21 - 2s_1 - 2s_2

obere Grenze: s1+s2s_1 + s_2

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s2s21323s1(neu)s21232s1(neu)12s12s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Bestimme obere Grenze für s2s_2:

bool( 1/3 - 2/3*s1 <= 1 - s1)
True
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/5)]]

Prüfe Grenzen für s2s_2:

solve_ineq(0 <= 1/3 - 2/3*s1) #true
[[s1 <= (1/2)]]
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
True
bool(1/3 - s1 <= 1/3 - 2/3*s1)
True
solve_ineq(0 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]

Bestimme untere Grenze für s2s_2:

solve_ineq(0 <= 1/3 - s1) #true
[[s1 <= (1/3)]]
solve_ineq(1/4 - 3/4*s1 <= 1/3 - s1) #true
[[s1 <= (1/3)]]

2cs0=1s1s2s315s11313s1s21232s112s12s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}


2cs0=1s1s2s30s11513s1s21323s112s12s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}

Fall 12

untere Grenze: 12s12s21 - 2s_1 - 2s_2

obere Grenze: 1212s2\frac{1}{2}-\frac{1}{2}s_2

2cs0=1s1s2s30s112(neu)0s21s11434s1s213s1s21323s1s212s1(neu)s21232s1(neu)12s12s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{2} \quad \textrm{(neu)}\\ 0 \leq s_2 \leq & 1 - s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1 \quad \textrm{(neu)}\\ s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1 \quad \textrm{(neu)}\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Bestimme obere Grenze für s2s_2:

bool(1/2 - 3/2*s1 <= 1 - s1)
True
bool(1/2 - 3/2*s1 <= 1 - 2*s1)
True

Prüfe Grenzen für s2s_2:

solve_ineq(0 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/4 - 3/4*s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/3 - s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/3)]]
solve_ineq(1/3 - 2/3*s1 <= 1/2 - 3/2*s1)
[[s1 <= (1/5)]]
2cs0=1s1s2s30s1150s21232s11434s1s213s1s21323s1s212s12s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5} \\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ \frac{1}{4} - \frac{3}{4} s_1 \leq s_2 \quad &\\ \frac{1}{3} - s_1 \leq s_2 \quad &\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \quad & \\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Bestimme die untere Grenze für s2s_2:

solve_ineq(0 <= 1/3 - 2/3*s1) #true
[[s1 <= (1/2)]]
bool(1/4 - 3/4*s1 <= 1/3 - 2/3*s1)
True
bool(1/3 - s1 <= 1/3 - 2/3*s1)
True

2cs0=1s1s2s30s1151323s1s21232s112s12s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5} \\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}

Baum 3

(Bereiche für Baum 2 wegen Symmetrie analog)
s0+s1+s2+s3=10s010s110s210s31 3s0+3s1+2s2+s3cs3s0+s1+1s2s0\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 & \leq 1\\ 0 \leq s_1 & \leq 1\\ 0 \leq s_2 & \leq 1\\ 0 \leq s_3 & \leq 1\\ \ \\ 3 \cdot s_0 + 3 \cdot s_1 + 2 \cdot s_2 + s_3 & \leq c \\ s_3 & \geq s_0 + s_1 + 1 \\ s_2 & \geq s_0 \\ \end{align*}
forget() var('s0,s1,s2,s3,c')
(s0, s1, s2, s3, c)
assume(0 <= s0) assume(0 <= s1) assume(0 <= s2) assume(0 <= s3) assume(s0 <= 1) assume(s1 <= 1) assume(s2 <= 1) assume(s3 <= 1)

Asymptotisch:

s0+s1+s2+s3=10s010s110s210s31 3s0+3s1+2s2+s3cs0+s1s3s0s2\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1\\ 0 \leq s_0 \leq &1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ 3 \cdot s_0 + 3 \cdot s_1 + 2 \cdot s_2 + s_3 & \leq c \\ s_0 + s_1 \leq s_3 \quad & \\ s_0 \leq s_2 \quad &\\ \end{align*}

Setze s1=1s0s2s3s_1 = 1 - s_0 - s_2 - s_3

s1 = 1 - s0 - s2 - s3

Forme Ungleichungen, die s2s_2 enthalten, um:

solve_ineq([3*s0+3*s1+2*s2+s3 <= c],[c,s3,s2,s0])
[[c == -s2 - 2*s3 + 3], [-s2 - 2*s3 + 3 < c]]
bool(s1 <= 1)
True
solve_ineq([0 <= s1],[s3,s2,s0,c])
[[s3 == -s0 - s2 + 1], [s3 < -s0 - s2 + 1]]
solve_ineq([s0 + s1 <= s3],[s3,s2,s0,c])
[[s3 == -1/2*s2 + 1/2], [-1/2*s2 + 1/2 < s3]]
s1=1s0s2s33s22s3c0s01s0s210s311212s2s3s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq &1 \\ s_0 \leq s_2 \leq& 1 \\ 0 \leq s_3 \leq &1 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \quad & \\ s_3 \leq & 1 - s_0 - s_2 \end{align*}

Prüfe neue Grenzen:

bool(1 - s0 - s2 <= 1)
True
bool(0 <= 1/2 - 1/2*s2)
True
solve_ineq([1/2 - 1/2*s2 <= 1 - s0 - s2],[s2,s0])
[[s2 == -2*s0 + 1], [s2 < -2*s0 + 1]]
s1=1s0s2s33s22s3c0s01s0s21s212s01212s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq &1 \\ s_0 \leq s_2 \leq& 1 \\ s_2 \leq & 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
bool(1 - 2*s0 <= 1)
True
solve_ineq(s0 <= 1 - 2*s0)
[[s0 <= (1/3)]]
s1=1s0s2s33s22s3c0s013s0s212s01212s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 3 - s_2 - 2 \cdot s_3 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}

Forme Ungleichung um, um Grenze für s3s_3 zu erhalten:

solve_ineq([3 - s2 - 2*s3 <= c], [s3, s2, c])
[[s3 == -1/2*c - 1/2*s2 + 3/2], [-1/2*c - 1/2*s2 + 3/2 < s3]]
s1=1s0s2s30s013s0s212s01212s2s31s0s23212c12s2s3\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \quad &\\ \end{align*}

Prüfe Grenzen und daraus erhaltene neue Grenzen:

solve_ineq([3/2 - 1/2*c - 1/2*s2 <= 1 - s0 - s2],[s2,s0,c])
solve_ineq([s0 <= c - 2*s0 - 1],[s0,c])
[[s0 == 1/3*c - 1/3], [s0 < 1/3*c - 1/3]]
solve_ineq([0 <= 1/3*c - 1/3])
[[c == 1], [1 < c]]
s1=1s0s2s31c0s013s013c13s0s212s0s2c2s011212s2s31s0s23212c12s2s3\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 1 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ s_2 \leq & c - 2s_0 -1 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \quad &\\ \end{align*}

Bestimme Grenzen:

solve_ineq([1/2 - 1/2*s2 >= 3/2 - 1/2*c - 1/2*s2],[s2,s0,c])
[[c == 2], [2 < c]]
solve_ineq([1-2*s0 <= c - 2*s0 - 1],[s0,c])
[[c == 2], [2 < c]]
solve_ineq([1/3 <= 1/3*c - 1/3])
[[c == 2], [2 < c]]

s1=1s0s2s31c20s013c13s0s2c2s013212c12s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 1 \leq c \leq & 2\\ 0 \leq s_0 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_0 \leq s_2 \leq& c - 2s_0 -1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}

s1=1s0s2s32c0s013s0s212s01212s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}

Baum 4

(Bereiche für Baum 5 wegen Symmetrie analog)
s0+s1+s2+s3=10s010s110s210s31 s0+3s1+3s2+2s3cs0s1+s2+1s3s1s0s3\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1 \quad &\\ 0 \leq s_0 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ s_0 + 3 \cdot s_1 + 3 \cdot s_2 + 2 \cdot s_3 \leq c \quad & \\ s_0 \geq & s_1 + s_2 + 1 \\ s_3 \geq & s_1 \\ s_0 \geq & s_3 \\ \end{align*}

Asymptotisch: s0+s1+s2+s3=10s010s110s210s31 s0+3s1+3s2+2s3cs1+s2s0s1s3s3s0\begin{align*} s_0 + s_1 + s_2 + s_3 & = 1 \quad &\\ 0 \leq s_0 \leq & 1\\ 0 \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & 1\\ 0 \leq s_3 \leq & 1\\ \ \\ s_0 + 3 \cdot s_1 + 3 \cdot s_2 + 2 \cdot s_3 \leq c \quad & \\ s_1 + s_2 \leq s_0 \quad &\\ s_1 \leq s_3 \quad & \\ s_3 \leq s_0 \quad &\\ \end{align*}

setze s2=1s0s1s3s_2 = 1 - s_0 - s_1 - s_3

forget() var('s0,s1,s2,s3,c')
(s0, s1, s2, s3, c)
assume(0 <= s0) assume(0 <= s1) assume(0 <= s2) assume(0 <= s3) assume(s0 <= 1) assume(s1 <= 1) assume(s2 <= 1) assume(s3 <= 1)
s2 = 1 - s0 - s1 - s3

Forme Ungleichungen, die s2s_2 enthalten, um:

s0 + 3*s1 + 3*s2 +2*s3 <= c
-2*s0 - s3 + 3 <= c
solve_ineq([s1 + s2 <= s0], [s0,s3,s1])
[[s0 == -1/2*s3 + 1/2], [-1/2*s3 + 1/2 < s0]]
bool(s2 <= 1)
True
solve_ineq([0 <= s2],[s0,s3,s1])
[[s0 == -s1 - s3 + 1], [s0 < -s1 - s3 + 1]]
s2=1s0s1s332s0s3c0s11s1s31s3s01s01s1s31212s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & 1 \\ s_1 \leq s_3 \leq & 1 \\ s_3 \leq s_0 \leq & 1 \\ s_0 \leq & 1 - s_1 - s_3 \\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \quad &\\ \end{align*}
bool(1 - s1 - s3 <= 1)
True

Überprüfe neue Grenzen und daraus erhaltene neue Grenzen:

solve_ineq([s3 <= 1 - s1 - s3],[s3,s1])
[[s3 == -1/2*s1 + 1/2], [s3 < -1/2*s1 + 1/2]]
solve_ineq(s1 <= 1/2 - 1/2*s1)
[[s1 <= (1/3)]]
solve_ineq([1/2 - 1/2*s3 <= 1 - s1 - s3 ], [s3,s1])
[[s3 == -2*s1 + 1], [s3 < -2*s1 + 1]]
solve_ineq([s1 <= 1 - 2*s1])
[[s1 == (1/3)], [s1 < (1/3)]]
s2=1s0s1s332s0s3c0s113s1s312s1s31212s1s3s01s1s31212s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & 1 - 2s_1\\ s_3 \leq & \frac{1}{2} - \frac{1}{2}s_1 \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \quad &\\ \end{align*}
solve_ineq( 1/2 - 1/2*s3 >= s3) # --> Fall 1 und Fall 2
[[s3 <= (1/3)]]
solve_ineq(1/2 -1/2*s1 <= 1 - 2*s1) #true
[[s1 <= (1/3)]]
solve_ineq(1/3 <= 1/2 - 1/2*s1) #true
[[s1 <= (1/3)]]

Fall 1

(s313)(s_3 \leq \frac{1}{3}) s2=1s0s1s332s0s3c0s113s1s3131212s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Forme Ungleichung um, um Grenze für s0s_0 zu erhalten:

solve_ineq([3 - 2*s0 - s3 <= c], [s0, s3, s1, c])
[[s0 == -1/2*c - 1/2*s3 + 3/2], [-1/2*c - 1/2*s3 + 3/2 < s0]]

Prüfe Grenzen:

solve_ineq([3/2 - 1/2*c - 1/2*s3 <= 1 - s1 - s3],[s3,s1,c])
[[s3 == c - 2*s1 - 1], [s3 < c - 2*s1 - 1]]
solve_ineq([s1 <= c - 2*s1 - 1],[s1,c])
[[s1 == 1/3*c - 1/3], [s1 < 1/3*c - 1/3]]
solve_ineq(0 <= 1/3*c - 1/3)
[[c >= 1]]
s2=1s0s1s31c0s113s113c13s1s313s3c2s111212s3s01s1s33212c12s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_1 \leq s_3 \leq & \frac{1}{3}\\ s_3 \leq & c - 2s_1 - 1\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}

Bestimme untere Grenze für s0s_0:

solve_ineq([1/2 - 1/2*s3 >= 3/2 - 1/2*c - 1/2*s3],[s3,s1,c])
[[c == 2], [2 < c]]

Bestimme obere Grenze für s3s_3:

solve_ineq([1/3 <= c - 2*s1 - 1],[s1,c]) # --> Fall 1.1 und Fall 1.2
[[s1 == 1/2*c - 2/3], [s1 < 1/2*c - 2/3]]

Fall 1.1

s2=1s0s1s31c0s113s113c13s112c23(neu)s1s3131212s3s01s1s33212c12s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \quad \textrm{(neu)}\\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}

prüfe neue Grenze:

solve_ineq(0 <= 1/2*c - 2/3)
[[c >= (4/3)]]

Bestimme obere Grenze für s1s_1:

solve_ineq(1/3 <= 1/3*c - 1/3)
[[c >= 2]]
solve_ineq(1/3 <= 1/2*c - 2/3)
[[c >= 2]]
solve_ineq(1/3*c - 1/3 <= 1/2*c - 2/3)
[[c >= 2]]

s2=1s0s1s343c20s112c23s1s3133212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3\leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

s2=1s0s1s32c0s113s1s3131212s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Fall 1.2

s2=1s0s1s31c0s113s113c1312c23s1(neu)s1s3c2s111212s3s01s1s33212c12s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{3}c - \frac{1}{3}\\ \frac{1}{2}c - \frac{2}{3} \leq s_1 \quad & \textrm{(neu)}\\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad & \end{align*}

Prüfe neue Grenze:

solve_ineq(1/2*c - 2/3 <= 1/3)
[[c <= 2]]
solve_ineq(1/2*c - 2/3 <= 1/3*c - 1/3)
[[c <= 2]]

Bestimme untere Grenze für s1s_1:

solve_ineq(1/2*c - 2/3 >= 0)
[[c >= (4/3)]]

Bestimme obere Grenze für s1s_1:

solve_ineq(1/3*c - 1/3 <= 1/3)
[[c <= 2]]

s2=1s0s1s343c212c23s113c13s1s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ \frac{1}{2}c - \frac{2}{3} \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

s2=1s0s1s31c430s113c13s1s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \leq & \frac{4}{3}\\ 0 \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Fall 2

(13s3)(\frac{1}{3} \leq s_3)

s2=1s0s1s332s0s3c0s113s1s31212s113s3s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ \frac{1}{3} \leq s_3 \quad & \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

da s113s_1 \leq \frac{1}{3} gilt: s2=1s0s1s332s0s3c0s11313s31212s1s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 3 - 2 \cdot s_0 - s_3 \leq c \\ 0 \leq s_1 \leq & \frac{1}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Forme Ungleichung um, um Grenze für s0s_0 zu erhalten:

solve_ineq([3 - 2*s0 - s3 <= c], [s0, s3, s1, c])
[[s0 == -1/2*c - 1/2*s3 + 3/2], [-1/2*c - 1/2*s3 + 3/2 < s0]]

Prüfe die neue(n) Grenze(n):

solve_ineq([3/2 - 1/2*c - 1/2*s3 <= 1 - s1 - s3], [s3, s1, c])
[[s3 == c - 2*s1 - 1], [s3 < c - 2*s1 - 1]]
solve_ineq([1/3 <= c - 2*s1 - 1], [s1, c])
[[s1 == 1/2*c - 2/3], [s1 < 1/2*c - 2/3]]
solve_ineq(0 <= 1/2*c - 2/3)
[[c >= (4/3)]]
s2=1s0s1s343c0s113s112c2313s31212s1s3c2s11s3s01s1s33212c12s3s0\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \quad &\\ \end{align*}

Bestimme untere Grenze für s0s_0:

solve_ineq([s3 >= 3/2 - 1/2*c - 1/2*s3], [s3,s1,c]) # --> Fall 2.1 und Fall 2.2
[[s3 == -1/3*c + 1], [-1/3*c + 1 < s3]]

Fall 2.1

s2=1s0s1s343c0s113s112c2313s31212s1s3c2s11113cs3(neu)s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ 1 - \frac{1}{3}c \leq s_3 \quad & \textrm{(neu)}\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Prüfe neue Grenze(n):

solve_ineq([1 - 1/3*c <= 1/2 - 1/2*s1],[s1,c])
[[s1 == 2/3*c - 1], [s1 < 2/3*c - 1]]
solve_ineq([1 - 1/3*c <= c - 2*s1 - 1], [s1,c])
[[s1 == 2/3*c - 1], [s1 < 2/3*c - 1]]
solve_ineq(0 <= 2/3*c - 1)
[[c >= (3/2)]]
bool(3/2 >= 4/3)
True
s2=1s0s1s332c0s113s112c23s123c113s31212s1s3c2s11113cs3s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq & \frac{2}{3}c - 1 \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ 1 - \frac{1}{3}c \leq s_3 \quad & \\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Grenzen für s3s_3:

solve_ineq(1/3 >= 1 - 1/3*c)
[[c >= 2]]
solve_ineq([1/2 - 1/2*s1 <= c - 2*s1 - 1], [s1, c]) #true
[[s1 == 2/3*c - 1], [s1 < 2/3*c - 1]]

obere Grenze für s1s_1:

solve_ineq(1/3 <= 1/2*c - 2/3)
[[c >= 2]]
solve_ineq(1/3 <= 2/3*c - 1)
[[c >= 2]]
solve_ineq(2/3*c -1 <= 1/2*c - 2/3)
[[c <= 2]]

s2=1s0s1s332c20s123c1113cs31212s1s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ 1 - \frac{1}{3}c \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

s2=1s0s1s32c0s11313s31212s1s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Fall 2.2

s2=1s0s1s343c0s113s112c2313s31212s1s3c2s11s3113c(neu)3212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq & c - 2s_1 - 1 \\ s_3 \leq & 1 - \frac{1}{3}c \quad \textrm{(neu)}\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Prüfe neue Grenze:

solve_ineq(1/3 <= 1 - 1/3*c)
[[c <= 2]]

Bestimme Grenze für s3s_3:

solve_ineq([c - 2*s1 - 1 <= 1 - 1/3*c], [s1, c])
[[s1 == 2/3*c - 1], [2/3*c - 1 < s1]]
solve_ineq([c - 2*s1 - 1 <= 1/2 - 1/2*s1], [s1, c])
[[s1 == 2/3*c - 1], [2/3*c - 1 < s1]]
solve_ineq([1 - 1/3*c <= c - 2*s1 - 1], [s1, c])
[[s1 == 2/3*c - 1], [s1 < 2/3*c - 1]]
solve_ineq([1 - 1/3*c <= 1/2 - 1/2*s1], [s1,c]) #--> Fall 2.2.1 und Fall 2.2.2
[[s1 == 2/3*c - 1], [s1 < 2/3*c - 1]]

Fall 2.2.1 s2=1s0s1s343c20s113s112c2323c1s1(neu)13s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{2}{3}c - 1 \leq s_1 \quad & \textrm{(neu)}\\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Prüfe neue Grenze:

solve_ineq(2/3*c - 1 <= 1/3) #true
[[c <= 2]]
solve_ineq(2/3*c - 1 <= 1/2*c - 2/3) #true
[[c <= 2]]

Grenzen für s1s_1:

solve_ineq(2/3*c - 1 >= 0)
[[c >= (3/2)]]
bool(3/2 > 4/3)
True
solve_ineq(1/2*c - 2/3 <= 1/3) #true
[[c <= 2]]

s2=1s0s1s343c320s112c2313s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & \frac{3}{2}\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

s2=1s0s1s332c223c1s112c2313s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ \frac{2}{3}c - 1 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Fall 2.2.2 s2=1s0s1s343c20s113s112c23s123c1(neu)13s3113c3212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2 \\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq & \frac{2}{3}c - 1 \quad \textrm{(neu)} \\ \frac{1}{3} \leq s_3 \leq & 1 - \frac{1}{3}c \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}

Prüfe neue Grenze:

solve_ineq(0 <= 2/3*c - 1)
[[c >= (3/2)]]

Bestimme Grenzen für s1s_1:

solve_ineq(2/3*c - 1 <= 1/3)
[[c <= 2]]
solve_ineq(2/3*c - 1 <= 1/2*c - 2/3)
[[c <= 2]]

s2=1s0s1s332c20s123c113s3113c3212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2 \\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ \frac{1}{3} \leq s_3 \leq & 1 - \frac{1}{3}c \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}