Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
193 views
Kernel: SageMath (stable)
Melanie Siebenhofer, Jänner 2018

Integrale über alle Bereiche

Baum 1

var('s0, s1, s2, s3, c')
(s0, s1, s2, s3, c)

Fall 1: 2c2 \leq c

2cs0=1s1s2s30s11312s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ 1 - 2 \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
P = (1 - s1 - s2 - s3, s1, s2, s3) D = jacobian( P, (s1, s2, s3) ) d = sqrt( (D.transpose() * D).det() ) #verallgemeinerte Funktionaldeterminante i1 = d.integrate(s3, 0, 1 - s1 - s2).integrate(s2, 1 - 2*s1, 1 - s1).integrate(s1, 0, 1/3)
2cs0=1s1s2s313s1121212s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{2} - \frac{1}{2} \cdot s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
i2 = d.integrate(s3, 0, 1 - s1 - s2).integrate(s2, 1/2 - 1/2*s1, 1 - s1).integrate(s1, 1/3, 1/2)

Fall 2:

2cs0=1s1s2s312s111212s1s21s10s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1 \\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - s_1\\ 0 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
i3 = d.integrate(s3, 0, 1 - s1 - s2).integrate(s2, 1/2 - 1/2*s1, 1 - s1).integrate(s1, 1/2, 1)

Fall 4:

2cs0=1s1s2s30s1131212s1s212s10s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2}s_1 \leq s_2 \leq & 1 - 2 s_1\\ 0 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2 \\ \end{align*}
i4 = d.integrate(s3, 0, 1/2 - 1/2*s2).integrate(s2, 1/2 - 1/2*s1, 1 - 2*s1).integrate(s1, 0, 1/3)

Fall 5:

2cs0=1s1s2s313s11212s1s21212s11212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 1 - 2s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
i5 = d.integrate(s3, 1/2 - 1/2*s1 - s2, 1 - s1 - s2).integrate(s2, 1 - 2*s1, 1/2 - 1/2*s1).integrate(s1, 1/3, 1/2)

Fall 6:

2cs0=1s1s2s312s110s21212s11212s1s2s31s1s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{2} \leq s_1 \leq & 1\\ 0 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1 \\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & 1 - s_1 - s_2\\ \end{align*}
i6 = d.integrate(s3, 1/2 - 1/2*s1 - s2, 1 - s1 - s2).integrate(s2, 0, 1/2 - 1/2*s1).integrate(s1, 1/2, 1)

Fall 7:

2cs0=1s1s2s313s1120s21323s11212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ 0 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
i7 = d.integrate(s3, 1/2 - 1/2*s1 - s2, s1 + s2).integrate(s2, 0, 1/3 - 2/3*s1).integrate(s1, 1/3, 1/2)
2cs0=1s1s2s315s1131232s1s21323s11212s1s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1 \quad\\ \frac{1}{2} - \frac{1}{2}s_1 - s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
i8 = d.integrate(s3, 1/2 - 1/2*s1 - s2, s1 + s2).integrate(s2, 1/2 - 3/2*s1, 1/3 - 2/3*s1).integrate(s1, 1/5, 1/3)

Fall 8:

2cs0=1s1s2s313s1121323s1s212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{3} \leq s_1 \leq & \frac{1}{2}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & 1 - 2 s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
i9 = d.integrate(s3, 1/2 - 1/2*s1 - s2, 1/2 - 1/2*s2).integrate(s2, 1/3 - 2/3*s1, 1 - 2*s1).integrate(s1, 1/3, 1/2)
2cs0=1s1s2s30s1151232s1s21212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{2} - \frac{3}{2} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
i10 = d.integrate(s3, 1/2 - 1/2*s1 - s2, 1/2 - 1/2*s2).integrate(s2, 1/2 - 3/2*s1, 1/2 - 1/2*s1).integrate(s1, 0, 1/5)
2cs0=1s1s2s315s1131323s1s21212s11212s1s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{1}{2} s_1\\ \frac{1}{2} - \frac{1}{2} s_1 - s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
i11 = d.integrate(s3, 1/2 - 1/2*s1 - s2, 1/2 - 1/2*s2).integrate(s2, 1/3 - 2/3*s1, 1/2 - 1/2*s1).integrate(s1, 1/5, 1/3)

Fall 11:

2cs0=1s1s2s315s11313s1s21232s112s12s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ \frac{1}{5} \leq s_1 \leq & \frac{1}{3}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
i12 = d.integrate(s3, 1 - 2*s1 - 2*s2, s1 + s2).integrate(s2, 1/3 - s1, 1/2 - 3/2*s1).integrate(s1, 1/5, 1/3)
2cs0=1s1s2s30s11513s1s21323s112s12s2s3s1+s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5}\\ \frac{1}{3} - s_1 \leq s_2 \leq & \frac{1}{3} - \frac{2}{3} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & s_1 + s_2\\ \end{align*}
i13 = d.integrate(s3, 1 - 2*s1 - 2*s2, s1 + s2).integrate(s2, 1/3 - s1, 1/3 - 2/3*s1).integrate(s1, 0, 1/5)

Fall 12:

2cs0=1s1s2s30s1151323s1s21232s112s12s2s31212s2\begin{align*} 2 \leq c \quad &\\ s_0 = & 1 - s_1 - s_2 - s_3\\ 0 \leq s_1 \leq & \frac{1}{5} \\ \frac{1}{3} - \frac{2}{3} s_1 \leq s_2 \leq & \frac{1}{2} - \frac{3}{2} s_1\\ 1 - 2s_1 - 2 s_2 \leq s_3 \leq & \frac{1}{2} - \frac{1}{2} s_2\\ \end{align*}
i14 = d.integrate(s3, 1 - 2*s1 - 2*s2, 1/2 - 1/2*s2).integrate(s2, 1/3 - 2/3*s1, 1/2 - 3/2*s1).integrate(s1, 0, 1/5)
def b1(c): if c >= 2: return i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13 + i14 else: return 0

Baum 2 + 3

P = (s0, 1 - s0 - s2 - s3, s2, s3) D = jacobian( P, (s0, s2, s3) ) d = sqrt( (D.transpose() * D).det() ) #verallgemeinerte Funktionaldeterminante
s1=1s0s2s31c20s013c13s0s2c2s013212c12s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 1 \leq c \leq & 2\\ 0 \leq s_0 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_0 \leq s_2 \leq& c - 2s_0 -1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
i15 = d.integrate(s3, 3/2 - 1/2*c - 1/2*s2, 1 - s0 - s2).integrate(s2, s0, c - 2*s0 - 1).integrate(s0, 0, 1/3*c - 1/3)
s1=1s0s2s32c0s013s0s212s01212s2s31s0s2\begin{align*} s_1 = & 1 - s_0 - s_2 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_0 \leq & \frac{1}{3} \\ s_0 \leq s_2 \leq& 1 - 2 \cdot s_0 \\ \frac{1}{2} - \frac{1}{2} \cdot s_2 \leq s_3 \leq &1- s_0 - s_2 \\ \end{align*}
i16 = d.integrate(s3, 1/2 - 1/2*s2, 1 - s0 - s2).integrate(s2, s0, 1 - 2*s0).integrate(s0, 0, 1/3)
def b23(c): if 1 <= c and c < 2: return 2 * i5(c=c) if c >= 2: return 2 * i16 else: return 0

Baum 4 + 5

P = (s0, s1, 1 - s0 - s1 - s3, s3) D = jacobian( P, (s0, s1, s3) ) d = sqrt( (D.transpose() * D).det() ) #verallgemeinerte Funktionaldeterminante

Fall 1.1:

s2=1s0s1s343c20s112c23s1s3133212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3\leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i17 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, s1, 1/3).integrate(s1, 0, 1/2*c - 2/3)
s2=1s0s1s32c0s113s1s3131212s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad &\\ 0 \leq s_1 \leq & \frac{1}{3} \\ s_1 \leq s_3 \leq & \frac{1}{3}\\ \frac{1}{2} - \frac{1}{2} \cdot s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i18 = d.integrate(s0, 1/2 - 1/2*s3, 1 - s1 - s3).integrate(s3, s1, 1/3).integrate(s1, 0, 1/3)

Fall 1.2:

s2=1s0s1s343c212c23s113c13s1s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & 2\\ \frac{1}{2}c - \frac{2}{3} \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i19 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, s1, c - 2*s1 - 1).integrate(s1, 1/2*c - 2/3, 1/3*c - 1/3)
s2=1s0s1s31c430s113c13s1s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 1 \leq c \leq & \frac{4}{3}\\ 0 \leq s_1 \leq & \frac{1}{3}c - \frac{1}{3} \\ s_1 \leq s_3 \leq & c - 2s_1 - 1\\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i20 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, s1, c - 2*s1 - 1).integrate(s1, 0, 1/3*c - 1/3)

Fall 2.1:

s2=1s0s1s332c20s123c1113cs31212s1s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ 1 - \frac{1}{3}c \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i21 = d.integrate(s0, s3, 1 - s1 - s3).integrate(s3, 1 - 1/3*c, 1/2 - 1/2*s1).integrate(s1, 0, 2/3*c - 1)
s2=1s0s1s32c0s11313s31212s1s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ 2 \leq c \quad & \\ 0 \leq s_1 \leq & \frac{1}{3} \\ \frac{1}{3} \leq s_3 \leq &\frac{1}{2} - \frac{1}{2}s_1\\ s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i22 = d.integrate(s0, s3, 1 - s1 - s3).integrate(s3, 1/3, 1/2 - 1/2*s1).integrate(s1, 0, 1/3)

Fall 2.2.1:

s2=1s0s1s343c320s112c2313s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{4}{3} \leq c \leq & \frac{3}{2}\\ 0 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i23 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, 1/3, c - 2*s1 - 1).integrate(s1, 0, 1/2*c - 2/3)
s2=1s0s1s332c223c1s112c2313s3c2s113212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2\\ \frac{2}{3}c - 1 \leq s_1 \leq & \frac{1}{2}c - \frac{2}{3} \\ \frac{1}{3} \leq s_3 \leq & c - 2s_1 - 1 \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i24 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, 1/3, c - 2*s1 - 1).integrate(s1, 2/3*c - 1, 1/2*c - 2/3)

Fall 2.2.2:

s2=1s0s1s332c20s123c113s3113c3212c12s3s01s1s3\begin{align*} s_2 = 1 - s_0 - s_1 - s_3 \\ \frac{3}{2} \leq c \leq & 2 \\ 0 \leq s_1 \leq & \frac{2}{3}c - 1 \\ \frac{1}{3} \leq s_3 \leq & 1 - \frac{1}{3}c \\ \frac{3}{2} - \frac{1}{2}c - \frac{1}{2}s_3 \leq s_0 \leq & 1 - s_1 - s_3 \\ \end{align*}
i25 = d.integrate(s0, 3/2 - 1/2*c - 1/2*s3, 1 - s1 - s3).integrate(s3, 1/3, 1 - 1/3*c).integrate(s1, 0, 2/3*c - 1)
def b45(c): if 1 <= c and c < 4/3: return 2*i20(c=c) if 4/3 <= c and c < 3/2: return 2*(i17(c=c) + i19(c=c) + i23(c=c)) if 3/2 <= c and c < 2: return 2*(i17(c=c) + i19(c=c) + i21(c=c) + i24(c=c) + i25(c=c)) if c >= 2: return 2*(i18 + i22) else: return 0

Normierung

um Verteilungsfunktion zu erhalten

Berechne dazu das Integral über den gesamten Bereich:

s0+s1+s2+s3=10s010s110s210s31\begin{align*} s_0 + s_1 + s_2 + s_3 = & 1 \\ 0 \leq s_0 \leq & 1 \\ 0 \leq s_1 \leq & 1 \\ 0 \leq s_2 \leq & 1 \\ 0 \leq s_3 \leq & 1 \\ \end{align*}
P = (s0, s1, s2, 1 - s0 - s1 - s2) D = jacobian( P, (s0, s1, s2) ) d = sqrt( (D.transpose() * D).det() ) #verallgemeinerte Funktionaldeterminante
n = d.integrate(s2, 0, 1 - s1 - s0).integrate(s1, 0, 1 - s0).integrate(s0, 0, 1) n
1/3
def F(c): return 1/n*(b1(c) + b23(c) + b45(c))
plot(F, (c,-1,3))
Image in a Jupyter notebook

\rightarrow Atome in 1 und 2

F(3) #teste, ob Funktionswert = 1
1
F1(c) = 1/n * 2*(i20 + i15) F1
c |--> 2/3*c^3 - 2*c^2 + 2*c - 2/3
F2(c) = 1/n * 2*(i15 + i17 + i19 + i23) F2
c |--> 2/3*c^3 - 2*c^2 + 2*c - 2/3
F3(c) = 1/n * 2*(i15 + i17 + i19 + i21 + i24 + i25) F3
c |--> -2/9*c^3 + 2*c^2 - 4*c + 7/3
F4(c) = 1/n * (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13 + i14 + 2*(i16 + i18 + i22) ) F4
c |--> 1

Verteilungsfunktion

F(x)={0fu¨x<1,23x32x2+2x23fu¨1x<32,29x3+2x24x+73fu¨32x<2,1sonst\begin{equation} F(x) = \begin{cases} 0 & \text{für } x < 1, \\ \frac{2}{3} x^3 - 2x^2 + 2x - \frac{2}{3} & \text{für } 1 \leq x < \frac{3}{2}, \\ -\frac{2}{9}x^3 + 2x^2 - 4x + \frac{7}{3} & \text{für } \frac{3}{2} \leq x < 2, \\ 1 & \text{sonst} \end{cases} \end{equation}

Dichtefunktion

def f(x): if 1 <= x and x < 4/3: return (diff(F1(c)))(c=x) if 4/3 <= x and x < 3/2: return (diff( F2(c)))(c=x) if 3/2 <= x and x < 2: return (diff(F3(c)))(c=x) if c >= x: return (diff(F4(c)))(c=x) else: return 0
plot(f, (c, -1, 3))
Image in a Jupyter notebook