GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X4 [33X[0;0YGeneralized Morphism Category by Three Arrows[133X[101X234[1X4.1 [33X[0;0YGAP Categories[133X[101X56[1X4.1-1 IsGeneralizedMorphismCategoryByThreeArrowsObject[101X78[29X[2XIsGeneralizedMorphismCategoryByThreeArrowsObject[102X( [3Xobject[103X ) [32X filter9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe GAP category of objects in the generalized morphism category by three12arrows.[133X1314[1X4.1-2 IsGeneralizedMorphismByThreeArrows[101X1516[29X[2XIsGeneralizedMorphismByThreeArrows[102X( [3Xobject[103X ) [32X filter17[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1819[33X[0;0YThe GAP category of morphisms in the generalized morphism category by three20arrows.[133X212223[1X4.2 [33X[0;0YProperties[133X[101X2425[1X4.2-1 HasIdentitiesAsReversedArrows[101X2627[29X[2XHasIdentitiesAsReversedArrows[102X( [3Xalpha[103X ) [32X property28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b31\rightarrow c \leftarrow d[123X. The output is [10Xtrue[110X if [23Xa \leftarrow b[123X and [23Xc32\leftarrow d[123X are congruent to identity morphisms, [10Xfalse[110X otherwise.[133X3334[1X4.2-2 HasIdentityAsSourceAid[101X3536[29X[2XHasIdentityAsSourceAid[102X( [3Xalpha[103X ) [32X property37[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3839[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b40\rightarrow c \leftarrow d[123X. The output is [10Xtrue[110X if [23Xa \leftarrow b[123X is41congruent to an identity morphism, [10Xfalse[110X otherwise.[133X4243[1X4.2-3 HasIdentityAsRangeAid[101X4445[29X[2XHasIdentityAsRangeAid[102X( [3Xalpha[103X ) [32X property46[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4748[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b49\rightarrow c \leftarrow d[123X. The output is [10Xtrue[110X if [23Xc \leftarrow d[123X is50congruent to an identity morphism, [10Xfalse[110X otherwise.[133X515253[1X4.3 [33X[0;0YAttributes[133X[101X5455[1X4.3-1 UnderlyingHonestObject[101X5657[29X[2XUnderlyingHonestObject[102X( [3Xa[103X ) [32X attribute58[6XReturns:[106X [33X[0;10Yan object in [23X\mathbf{A}[123X[133X5960[33X[0;0YThe argument is an object [23Xa[123X in the generalized morphism category by three61arrows. The output is its underlying honest object.[133X6263[1X4.3-2 SourceAid[101X6465[29X[2XSourceAid[102X( [3Xalpha[103X ) [32X attribute66[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{A}}(b,a)[123X[133X6768[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b69\rightarrow c \leftarrow d[123X. The output is its source aid [23Xa \leftarrow b[123X.[133X7071[1X4.3-3 RangeAid[101X7273[29X[2XRangeAid[102X( [3Xalpha[103X ) [32X attribute74[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{A}}(d,c)[123X[133X7576[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b77\rightarrow c \leftarrow d[123X. The output is its range aid [23Xc \leftarrow d[123X.[133X7879[1X4.3-4 Arrow[101X8081[29X[2XArrow[102X( [3Xalpha[103X ) [32X attribute82[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{A}}(b,c)[123X[133X8384[33X[0;0YThe argument is a generalized morphism [23X\alpha[123X by three arrows [23Xa \leftarrow b85\rightarrow c \leftarrow d[123X. The output is its range aid [23Xb \rightarrow c[123X.[133X8687[1X4.3-5 PseudoInverse[101X8889[29X[2XPseudoInverse[102X( [3Xalpha[103X ) [32X attribute90[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,a)[123X[133X9192[33X[0;0YThe argument is a generalized morphism [23X\alpha: a \rightarrow b[123X by three93arrows. The output is its pseudo inverse [23Xb \rightarrow a[123X.[133X9495[1X4.3-6 GeneralizedInverseByThreeArrows[101X9697[29X[2XGeneralizedInverseByThreeArrows[102X( [3Xalpha[103X ) [32X attribute98[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,a)[123X[133X99100[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b \in \mathbf{A}[123X. The101output is its generalized inverse [23Xb \rightarrow a[123X by three arrows.[133X102103[1X4.3-7 IdempotentDefinedBySubobjectByThreeArrows[101X104105[29X[2XIdempotentDefinedBySubobjectByThreeArrows[102X( [3Xalpha[103X ) [32X attribute106[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,b)[123X[133X107108[33X[0;0YThe argument is a subobject [23X\alpha: a \hookrightarrow b \in \mathbf{A}[123X. The109output is the idempotent [23Xb \rightarrow b \in \mathbf{G(A)}[123X by three arrows110defined by [23X\alpha[123X.[133X111112[1X4.3-8 IdempotentDefinedByFactorobjectByThreeArrows[101X113114[29X[2XIdempotentDefinedByFactorobjectByThreeArrows[102X( [3Xalpha[103X ) [32X attribute115[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,b)[123X[133X116117[33X[0;0YThe argument is a factorobject [23X\alpha: b \twoheadrightarrow a \in118\mathbf{A}[123X. The output is the idempotent [23Xb \rightarrow b \in \mathbf{G(A)}[123X119by three arrows defined by [23X\alpha[123X.[133X120121122[1X4.4 [33X[0;0YOperations[133X[101X123124[1X4.4-1 GeneralizedMorphismFromFactorToSubobjectByThreeArrows[101X125126[29X[2XGeneralizedMorphismFromFactorToSubobjectByThreeArrows[102X( [3Xbeta[103X, [3Xalpha[103X ) [32X operation127[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(c,a)[123X[133X128129[33X[0;0YThe arguments are a a factorobject [23X\beta: b \twoheadrightarrow c[123X, and a130subobject [23X\alpha: a \hookrightarrow b[123X. The output is the generalized131morphism by three arrows from the factorobject to the subobject.[133X132133[1X4.4-2 CommonCoastriction[101X134135[29X[2XCommonCoastriction[102X( [3XL[103X ) [32X operation136[6XReturns:[106X [33X[0;10Ya list of generalized morphisms[133X137138[33X[0;0YThe argument is a list [23XL[123X of generalized morphisms by three arrows having the139same range. The output is a list of generalized morphisms by three arrows140which is the comman coastriction of [23XL[123X.[133X141142143[1X4.5 [33X[0;0YConstructors[133X[101X144145[1X4.5-1 GeneralizedMorphismByThreeArrows[101X146147[29X[2XGeneralizedMorphismByThreeArrows[102X( [3Xalpha[103X, [3Xbeta[103X, [3Xgamma[103X ) [32X operation148[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,d)[123X[133X149150[33X[0;0YThe arguments are morphisms [23X\alpha: a \leftarrow b[123X, [23X\beta: b \rightarrow c[123X,151and [23X\gamma: c \leftarrow d[123X in [23X\mathbf{A}[123X. The output is a generalized152morphism by three arrows with source aid [23X\alpha[123X, arrow [23X\beta[123X, and range aid153[23X\gamma[123X.[133X154155[1X4.5-2 GeneralizedMorphismByThreeArrowsWithSourceAid[101X156157[29X[2XGeneralizedMorphismByThreeArrowsWithSourceAid[102X( [3Xalpha[103X, [3Xbeta[103X ) [32X operation158[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,c)[123X[133X159160[33X[0;0YThe arguments are morphisms [23X\alpha: a \leftarrow b[123X, and [23X\beta: b \rightarrow161c[123X in [23X\mathbf{A}[123X. The output is a generalized morphism by three arrows162defined by the composition the given two arrows regarded as generalized163morphisms.[133X164165[1X4.5-3 GeneralizedMorphismByThreeArrowsWithRangeAid[101X166167[29X[2XGeneralizedMorphismByThreeArrowsWithRangeAid[102X( [3Xbeta[103X, [3Xgamma[103X ) [32X operation168[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(b,d)[123X[133X169170[33X[0;0YThe arguments are morphisms [23X\beta: b \rightarrow c[123X, and [23X\gamma: c \leftarrow171d[123X in [23X\mathbf{A}[123X. The output is a generalized morphism by three arrows172defined by the composition the given two arrows regarded as generalized173morphisms.[133X174175[1X4.5-4 AsGeneralizedMorphismByThreeArrows[101X176177[29X[2XAsGeneralizedMorphismByThreeArrows[102X( [3Xalpha[103X ) [32X attribute178[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}_{\mathbf{G(A)}}(a,b)[123X[133X179180[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b[123X in [23X\mathbf{A}[123X. The output181is the honest generalized morphism by three arrows defined by [23X\alpha[123X.[133X182183[1X4.5-5 GeneralizedMorphismCategoryByThreeArrows[101X184185[29X[2XGeneralizedMorphismCategoryByThreeArrows[102X( [3XA[103X ) [32X attribute186[6XReturns:[106X [33X[0;10Ya category[133X187188[33X[0;0YThe argument is an abelian category [23X\mathbf{A}[123X. The output is its189generalized morphism category [23X\mathbf{G(A)}[123X by three arrows.[133X190191[1X4.5-6 GeneralizedMorphismByThreeArrowsObject[101X192193[29X[2XGeneralizedMorphismByThreeArrowsObject[102X( [3Xa[103X ) [32X attribute194[6XReturns:[106X [33X[0;10Yan object in [23X\mathbf{G(A)}[123X[133X195196[33X[0;0YThe argument is an object [23Xa[123X in an abelian category [23X\mathbf{A}[123X. The output is197the object in the generalized morphism category by three arrows whose198underlying honest object is [23Xa[123X.[133X199200201202