Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563554 views
1
2
4 Generalized Morphism Category by Three Arrows
3
4
5
4.1 GAP Categories
6
7
4.1-1 IsGeneralizedMorphismCategoryByThreeArrowsObject
8
9
IsGeneralizedMorphismCategoryByThreeArrowsObject( object )  filter
10
Returns: true or false
11
12
The GAP category of objects in the generalized morphism category by three
13
arrows.
14
15
4.1-2 IsGeneralizedMorphismByThreeArrows
16
17
IsGeneralizedMorphismByThreeArrows( object )  filter
18
Returns: true or false
19
20
The GAP category of morphisms in the generalized morphism category by three
21
arrows.
22
23
24
4.2 Properties
25
26
4.2-1 HasIdentitiesAsReversedArrows
27
28
HasIdentitiesAsReversedArrows( alpha )  property
29
Returns: true or false
30
31
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
32
\rightarrow c \leftarrow d. The output is true if a \leftarrow b and c
33
\leftarrow d are congruent to identity morphisms, false otherwise.
34
35
4.2-2 HasIdentityAsSourceAid
36
37
HasIdentityAsSourceAid( alpha )  property
38
Returns: true or false
39
40
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
41
\rightarrow c \leftarrow d. The output is true if a \leftarrow b is
42
congruent to an identity morphism, false otherwise.
43
44
4.2-3 HasIdentityAsRangeAid
45
46
HasIdentityAsRangeAid( alpha )  property
47
Returns: true or false
48
49
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
50
\rightarrow c \leftarrow d. The output is true if c \leftarrow d is
51
congruent to an identity morphism, false otherwise.
52
53
54
4.3 Attributes
55
56
4.3-1 UnderlyingHonestObject
57
58
UnderlyingHonestObject( a )  attribute
59
Returns: an object in \mathbf{A}
60
61
The argument is an object a in the generalized morphism category by three
62
arrows. The output is its underlying honest object.
63
64
4.3-2 SourceAid
65
66
SourceAid( alpha )  attribute
67
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,a)
68
69
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
70
\rightarrow c \leftarrow d. The output is its source aid a \leftarrow b.
71
72
4.3-3 RangeAid
73
74
RangeAid( alpha )  attribute
75
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(d,c)
76
77
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
78
\rightarrow c \leftarrow d. The output is its range aid c \leftarrow d.
79
80
4.3-4 Arrow
81
82
Arrow( alpha )  attribute
83
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,c)
84
85
The argument is a generalized morphism \alpha by three arrows a \leftarrow b
86
\rightarrow c \leftarrow d. The output is its range aid b \rightarrow c.
87
88
4.3-5 PseudoInverse
89
90
PseudoInverse( alpha )  attribute
91
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
92
93
The argument is a generalized morphism \alpha: a \rightarrow b by three
94
arrows. The output is its pseudo inverse b \rightarrow a.
95
96
4.3-6 GeneralizedInverseByThreeArrows
97
98
GeneralizedInverseByThreeArrows( alpha )  attribute
99
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
100
101
The argument is a morphism \alpha: a \rightarrow b \in \mathbf{A}. The
102
output is its generalized inverse b \rightarrow a by three arrows.
103
104
4.3-7 IdempotentDefinedBySubobjectByThreeArrows
105
106
IdempotentDefinedBySubobjectByThreeArrows( alpha )  attribute
107
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
108
109
The argument is a subobject \alpha: a \hookrightarrow b \in \mathbf{A}. The
110
output is the idempotent b \rightarrow b \in \mathbf{G(A)} by three arrows
111
defined by \alpha.
112
113
4.3-8 IdempotentDefinedByFactorobjectByThreeArrows
114
115
IdempotentDefinedByFactorobjectByThreeArrows( alpha )  attribute
116
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
117
118
The argument is a factorobject \alpha: b \twoheadrightarrow a \in
119
\mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)}
120
by three arrows defined by \alpha.
121
122
123
4.4 Operations
124
125
4.4-1 GeneralizedMorphismFromFactorToSubobjectByThreeArrows
126
127
GeneralizedMorphismFromFactorToSubobjectByThreeArrows( beta, alpha )  operation
128
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(c,a)
129
130
The arguments are a a factorobject \beta: b \twoheadrightarrow c, and a
131
subobject \alpha: a \hookrightarrow b. The output is the generalized
132
morphism by three arrows from the factorobject to the subobject.
133
134
4.4-2 CommonCoastriction
135
136
CommonCoastriction( L )  operation
137
Returns: a list of generalized morphisms
138
139
The argument is a list L of generalized morphisms by three arrows having the
140
same range. The output is a list of generalized morphisms by three arrows
141
which is the comman coastriction of L.
142
143
144
4.5 Constructors
145
146
4.5-1 GeneralizedMorphismByThreeArrows
147
148
GeneralizedMorphismByThreeArrows( alpha, beta, gamma )  operation
149
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,d)
150
151
The arguments are morphisms \alpha: a \leftarrow b, \beta: b \rightarrow c,
152
and \gamma: c \leftarrow d in \mathbf{A}. The output is a generalized
153
morphism by three arrows with source aid \alpha, arrow \beta, and range aid
154
\gamma.
155
156
4.5-2 GeneralizedMorphismByThreeArrowsWithSourceAid
157
158
GeneralizedMorphismByThreeArrowsWithSourceAid( alpha, beta )  operation
159
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,c)
160
161
The arguments are morphisms \alpha: a \leftarrow b, and \beta: b \rightarrow
162
c in \mathbf{A}. The output is a generalized morphism by three arrows
163
defined by the composition the given two arrows regarded as generalized
164
morphisms.
165
166
4.5-3 GeneralizedMorphismByThreeArrowsWithRangeAid
167
168
GeneralizedMorphismByThreeArrowsWithRangeAid( beta, gamma )  operation
169
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,d)
170
171
The arguments are morphisms \beta: b \rightarrow c, and \gamma: c \leftarrow
172
d in \mathbf{A}. The output is a generalized morphism by three arrows
173
defined by the composition the given two arrows regarded as generalized
174
morphisms.
175
176
4.5-4 AsGeneralizedMorphismByThreeArrows
177
178
AsGeneralizedMorphismByThreeArrows( alpha )  attribute
179
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)
180
181
The argument is a morphism \alpha: a \rightarrow b in \mathbf{A}. The output
182
is the honest generalized morphism by three arrows defined by \alpha.
183
184
4.5-5 GeneralizedMorphismCategoryByThreeArrows
185
186
GeneralizedMorphismCategoryByThreeArrows( A )  attribute
187
Returns: a category
188
189
The argument is an abelian category \mathbf{A}. The output is its
190
generalized morphism category \mathbf{G(A)} by three arrows.
191
192
4.5-6 GeneralizedMorphismByThreeArrowsObject
193
194
GeneralizedMorphismByThreeArrowsObject( a )  attribute
195
Returns: an object in \mathbf{G(A)}
196
197
The argument is an object a in an abelian category \mathbf{A}. The output is
198
the object in the generalized morphism category by three arrows whose
199
underlying honest object is a.
200
201
202