GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
12[1X[5Xnumericalsgps[105X-- a package for numerical semigroups[101X345Version 1.1.5678Manuel Delgado910Pedro A. García-Sánchez1112José João Morais13141516Manuel Delgado17Email: [7Xmailto:[email protected][107X18Homepage: [7Xhttp://www.fc.up.pt/cmup/mdelgado[107X19Pedro A. García-Sánchez20Email: [7Xmailto:[email protected][107X21Homepage: [7Xhttp://www.ugr.es/~pedro[107X2223-------------------------------------------------------24[1XCopyright[101X25[33X[0;0Y© 2005--2015 Centro de Matemática da Universidade do Porto, Portugal and26Universidad de Granada, Spain[133X2728[33X[0;0Y[13XNumericalsgps[113X is free software; you can redistribute it and/or modify it29under the terms of the GNU General Public License30([7Xhttp://www.fsf.org/licenses/gpl.html[107X) as published by the Free Software31Foundation; either version 2 of the License, or (at your option) any later32version.[133X333435-------------------------------------------------------36[1XAcknowledgements[101X37[33X[0;0YThe first author's work was (partially) supported by the [13XCentro de38Matemática da Universidade do Porto[113X (CMUP), financed by FCT (Portugal)39through the programs POCTI (Programa Operacional "Ciência, Tecnologia,40Inovação") and POSI (Programa Operacional Sociedade da Informação), with41national and European Community structural funds and a sabbatical grant of42FCT.[133X4344[33X[0;0YThe second author was supported by the projects MTM2004-01446, MTM2007-6234645and MTM2010-15595, the Junta de Andalucía group FQM-343, and FEDER founds.[133X4647[33X[0;0YThe third author acknowledges financial support of FCT and the POCTI program48through a scholarship given by [13XCentro de Matemática da Universidade do49Porto[113X.[133X5051[33X[0;0YThe authors wish to thank J. I. García-García and Alfredo Sánchez-R. Navarro52for many helpful discussions and for helping in the programming of53preliminary versions of some functions, and also to C. O'Neill, A.54Sammartano, I. Ojeda, C. M. Moreno Ávila, A. Herrera-Poyatos and K. Stokes55for their contributions (see Contributions Chapter). We are also in debt56with S. Gutsche, M. Horn, H. Schönemann, C. Söeger and M. Barakat for their57fruitful advices concerning 4ti2Interface, SingularInterface, Singular,58Normaliz, NormalizInterface and GradedModules.[133X5960[33X[0;0YThe first and second authors warmly thank María Burgos for her support and61help.[133X6263[33X[0;0Y[12XConcerning the mantainment:[112X[133X6465[33X[0;0YThe first author was (partially) supported by the FCT project66PTDC/MAT/65481/2006 and also by the [13XCentro de Matemática da Universidade do67Porto[113X (CMUP), funded by the European Regional Development Fund through the68programme COMPETE and by the Portuguese Government through the FCT -69Fundação para a Ciência e a Tecnologia under the project70PEst-C/MAT/UI0144/2011.[133X7172[33X[0;0YThe second author was/is supported by the project MTM2014-55367-P, which is73funded by Ministerio de Economía y Competitividad and the Fondo Europeo de74Desarrollo Regional FEDER.[133X7576[33X[0;0YBoth maintainers want to acknowledge partial support by CMUP77(UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC)78and European structural funds through the programs FEDER, under the79partnership agreement PT2020.[133X8081[33X[0;0YBoth maintainers are also supported by the project MTM2014-55367-P, which is82funded by Ministerio de Economía y Competitividad and Fondo Europeo de83Desarrollo Regional FEDER.[133X8485[33X[0;0YThe maintainers want to thank the organizers of [10XGAPDays[110X in their several86editions.[133X8788[33X[0;0YThe authors also thank the Centro de Servicios de Informática y Redes de89Comunicaciones (CSIRC), Universidad de Granada, for providing the computing90time, specially Rafael Arco Arredondo for installing everything this package91and the extra software needed in alhambra.ugr.es.[133X929394-------------------------------------------------------95[1XColophon[101X96[33X[0;0YThis work started when (in 2004) the first author visited the University of97Granada in part of a sabbatical year. Since Version 0.96 (released in 2008),98the package is maintained by the first two authors. Bug reports, suggestions99and comments are, of course, welcome. Please use our email addresses to this100effect.[133X101102[33X[0;0YIf you have benefited from the use of the numerigalsgps GAP package in your103research, please cite it in addition to GAP itself, following the scheme104proposed in [7Xhttp://www.gap-system.org/Contacts/cite.html[107X.[133X105106[33X[0;0YIf you have predominantly used the functions in the Appendix, contributed by107other authors, please cite in addition these authors, referring "software108implementations available in the GAP package NumericalSgps".[133X109110111-------------------------------------------------------112113114[1XContents (NumericalSgps)[101X1151161 [33X[0;0YIntroduction[133X1172 [33X[0;0YNumerical Semigroups[133X1182.1 [33X[0;0YGenerating Numerical Semigroups[133X1192.1-1 NumericalSemigroupByGenerators1202.1-2 NumericalSemigroupBySubAdditiveFunction1212.1-3 NumericalSemigroupByAperyList1222.1-4 NumericalSemigroupBySmallElements1232.1-5 NumericalSemigroupByGaps1242.1-6 NumericalSemigroupByFundamentalGaps1252.1-7 NumericalSemigroupByAffineMap1262.1-8 ModularNumericalSemigroup1272.1-9 ProportionallyModularNumericalSemigroup1282.1-10 NumericalSemigroupByInterval1292.1-11 NumericalSemigroupByOpenInterval1302.2 [33X[0;0YSome basic tests[133X1312.2-1 IsNumericalSemigroup1322.2-2 RepresentsSmallElementsOfNumericalSemigroup1332.2-3 RepresentsGapsOfNumericalSemigroup1342.2-4 IsAperyListOfNumericalSemigroup1352.2-5 IsSubsemigroupOfNumericalSemigroup1362.2-6 IsSubset1372.2-7 BelongsToNumericalSemigroup1383 [33X[0;0YBasic operations with numerical semigroups[133X1393.1 [33X[0;0YInvariants[133X1403.1-1 Multiplicity1413.1-2 GeneratorsOfNumericalSemigroup1423.1-3 EmbeddingDimension1433.1-4 SmallElements1443.1-5 FirstElementsOfNumericalSemigroup1453.1-6 RthElementOfNumericalSemigroup1463.1-7 AperyList1473.1-8 AperyList1483.1-9 AperyList1493.1-10 AperyListOfNumericalSemigroupAsGraph1503.1-11 KunzCoordinatesOfNumericalSemigroup1513.1-12 KunzPolytope1523.1-13 CocycleOfNumericalSemigroupWRTElement1533.1-14 FrobeniusNumber1543.1-15 Conductor1553.1-16 PseudoFrobeniusOfNumericalSemigroup1563.1-17 TypeOfNumericalSemigroup1573.1-18 Gaps1583.1-19 DesertsOfNumericalSemigroup1593.1-20 IsOrdinaryNumericalSemigroup1603.1-21 IsAcuteNumericalSemigroup1613.1-22 Holes1623.1-23 LatticePathAssociatedToNumericalSemigroup1633.1-24 Genus1643.1-25 FundamentalGaps1653.1-26 SpecialGaps1663.2 [33X[0;0YWilf's conjecture[133X1673.2-1 WilfNumber1683.2-2 EliahouNumber1693.2-3 ProfileOfNumericalSemigroup1703.2-4 EliahouSlicesOfNumericalSemigroup1714 [33X[0;0YPresentations of Numerical Semigroups[133X1724.1 [33X[0;0YPresentations of Numerical Semigroups[133X1734.1-1 MinimalPresentationOfNumericalSemigroup1744.1-2 GraphAssociatedToElementInNumericalSemigroup1754.1-3 BettiElementsOfNumericalSemigroup1764.1-4 PrimitiveElementsOfNumericalSemigroup1774.1-5 ShadedSetOfElementInNumericalSemigroup1784.2 [33X[0;0YUniquely Presented Numerical Semigroups[133X1794.2-1 IsUniquelyPresented1804.2-2 IsGeneric1815 [33X[0;0YConstructing numerical semigroups from others[133X1825.1 [33X[0;0YAdding and removing elements of a numerical semigroup[133X1835.1-1 RemoveMinimalGeneratorFromNumericalSemigroup1845.1-2 AddSpecialGapOfNumericalSemigroup1855.2 [33X[0;0YIntersections, and quotients and multiples by integers[133X1865.2-1 Intersection1875.2-2 QuotientOfNumericalSemigroup1885.2-3 MultipleOfNumericalSemigroup1895.2-4 Difference1905.2-5 NumericalDuplication1915.2-6 InductiveNumericalSemigroup1925.3 [33X[0;0YConstructing the set of all numerical semigroups containing a given193numerical semigroup[133X1945.3-1 OverSemigroupsNumericalSemigroup1955.4 [33X[0;0YConstructing the set of numerical semigroup with given Frobenius196number[133X1975.4-1 NumericalSemigroupsWithFrobeniusNumber1985.5 [33X[0;0YConstructing the set of numerical semigroups with genus g, that is,199numerical semigroups with exactly g gaps[133X2005.5-1 NumericalSemigroupsWithGenus2015.6 [33X[0;0YConstructing the set of numerical semigroups with a given set of202pseudo-Frobenius numbers[133X2035.6-1 ForcedIntegersForPseudoFrobenius2045.6-2 SimpleForcedIntegersForPseudoFrobenius2055.6-3 NumericalSemigroupsWithPseudoFrobeniusNumbers2065.6-4 ANumericalSemigroupWithPseudoFrobeniusNumbers2076 [33X[0;0YIrreducible numerical semigroups[133X2086.1 [33X[0;0YIrreducible numerical semigroups[133X2096.1-1 IsIrreducibleNumericalSemigroup2106.1-2 IsSymmetricNumericalSemigroup2116.1-3 IsPseudoSymmetric2126.1-4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber2136.1-5 IrreducibleNumericalSemigroupsWithFrobeniusNumber2146.1-6 DecomposeIntoIrreducibles2156.2 [33X[0;0YComplete intersection numerical semigroups[133X2166.2-1 AsGluingOfNumericalSemigroups2176.2-2 IsCompleteIntersection2186.2-3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber2196.2-4 IsFree2206.2-5 FreeNumericalSemigroupsWithFrobeniusNumber2216.2-6 IsTelescopic2226.2-7 TelescopicNumericalSemigroupsWithFrobeniusNumber2236.2-8 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity2246.2-9 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber2256.2-10 IsAperySetGammaRectangular2266.2-11 IsAperySetBetaRectangular2276.2-12 IsAperySetAlphaRectangular2286.3 [33X[0;0YAlmost-symmetric numerical semigroups[133X2296.3-1 AlmostSymmetricNumericalSemigroupsFromIrreducible2306.3-2 IsAlmostSymmetric2316.3-3 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber2327 [33X[0;0YIdeals of numerical semigroups[133X2337.1 [33X[0;0YDefinitions and basic operations[133X2347.1-1 IdealOfNumericalSemigroup2357.1-2 IsIdealOfNumericalSemigroup2367.1-3 MinimalGenerators2377.1-4 Generators2387.1-5 AmbientNumericalSemigroupOfIdeal2397.1-6 IsIntegral2407.1-7 SmallElements2417.1-8 Conductor2427.1-9 Minimum2437.1-10 BelongsToIdealOfNumericalSemigroup2447.1-11 SumIdealsOfNumericalSemigroup2457.1-12 MultipleOfIdealOfNumericalSemigroup2467.1-13 SubtractIdealsOfNumericalSemigroup2477.1-14 Difference2487.1-15 TranslationOfIdealOfNumericalSemigroup2497.1-16 Intersection2507.1-17 MaximalIdealOfNumericalSemigroup2517.1-18 CanonicalIdealOfNumericalSemigroup2527.1-19 IsCanonicalIdeal2537.1-20 TypeSequenceOfNumericalSemigroup2547.2 [33X[0;0YBlow ups and closures[133X2557.2-1 HilbertFunctionOfIdealOfNumericalSemigroup2567.2-2 BlowUpIdealOfNumericalSemigroup2577.2-3 ReductionNumber2587.2-4 BlowUpOfNumericalSemigroup2597.2-5 LipmanSemigroup2607.2-6 RatliffRushNumberOfIdealOfNumericalSemigroup2617.2-7 RatliffRushClosureOfIdealOfNumericalSemigroup2627.2-8 AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup2637.2-9 MultiplicitySequenceOfNumericalSemigroup2647.2-10 MicroInvariantsOfNumericalSemigroup2657.2-11 AperyListOfIdealOfNumericalSemigroupWRTElement2667.2-12 AperyTableOfNumericalSemigroup2677.2-13 StarClosureOfIdealOfNumericalSemigroup2687.3 [33X[0;0YPatterns for ideals[133X2697.3-1 IsAdmissiblePattern2707.3-2 IsStronglyAdmissiblePattern2717.3-3 AsIdealOfNumericalSemigroup2727.3-4 BoundForConductorOfImageOfPattern2737.3-5 ApplyPatternToIdeal2747.3-6 ApplyPatternToNumericalSemigroup2757.3-7 IsAdmittedPatternByIdeal2767.3-8 IsAdmittedPatternByNumericalSemigroup2777.4 [33X[0;0YGraded associated ring of numerical semigroup[133X2787.4-1 IsGradedAssociatedRingNumericalSemigroupCM2797.4-2 IsGradedAssociatedRingNumericalSemigroupBuchsbaum2807.4-3 TorsionOfAssociatedGradedRingNumericalSemigroup2817.4-4 BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup2827.4-5 IsMpure2837.4-6 IsPure2847.4-7 IsGradedAssociatedRingNumericalSemigroupGorenstein2857.4-8 IsGradedAssociatedRingNumericalSemigroupCI2868 [33X[0;0YNumerical semigroups with maximal embedding dimension[133X2878.1 [33X[0;0YNumerical semigroups with maximal embedding dimension[133X2888.1-1 IsMED2898.1-2 MEDNumericalSemigroupClosure2908.1-3 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup2918.2 [33X[0;0YNumerical semigroups with the Arf property and Arf closures[133X2928.2-1 IsArf2938.2-2 ArfNumericalSemigroupClosure2948.2-3 ArfCharactersOfArfNumericalSemigroup2958.2-4 ArfNumericalSemigroupsWithFrobeniusNumber2968.2-5 ArfNumericalSemigroupsWithFrobeniusNumberUpTo2978.2-6 ArfNumericalSemigroupsWithGenus2988.2-7 ArfNumericalSemigroupsWithGenusUpTo2998.2-8 ArfNumericalSemigroupsWithGenusAndFrobeniusNumber3008.3 [33X[0;0YSaturated numerical semigroups[133X3018.3-1 IsSaturated3028.3-2 SaturatedNumericalSemigroupClosure3038.3-3 SaturatedNumericalSemigroupsWithFrobeniusNumber3049 [33X[0;0YNonunique invariants for factorizations in numerical semigroups[133X3059.1 [33X[0;0YFactorizations in Numerical Semigroups[133X3069.1-1 FactorizationsIntegerWRTList3079.1-2 FactorizationsElementWRTNumericalSemigroup3089.1-3 FactorizationsElementListWRTNumericalSemigroup3099.1-4 RClassesOfSetOfFactorizations3109.1-5 LShapesOfNumericalSemigroup3119.1-6 DenumerantOfElementInNumericalSemigroup3129.2 [33X[0;0YInvariants based on lengths[133X3139.2-1 LengthsOfFactorizationsIntegerWRTList3149.2-2 LengthsOfFactorizationsElementWRTNumericalSemigroup3159.2-3 ElasticityOfFactorizationsElementWRTNumericalSemigroup3169.2-4 ElasticityOfNumericalSemigroup3179.2-5 DeltaSetOfSetOfIntegers3189.2-6 DeltaSetOfFactorizationsElementWRTNumericalSemigroup3199.2-7 DeltaSetPeriodicityBoundForNumericalSemigroup3209.2-8 DeltaSetPeriodicityStartForNumericalSemigroup3219.2-9 DeltaSetListUpToElementWRTNumericalSemigroup3229.2-10 DeltaSetUnionUpToElementWRTNumericalSemigroup3239.2-11 DeltaSetOfNumericalSemigroup3249.2-12 MaximumDegreeOfElementWRTNumericalSemigroup3259.2-13 MaximalDenumerantOfElementInNumericalSemigroup3269.2-14 MaximalDenumerantOfSetOfFactorizations3279.2-15 MaximalDenumerantOfNumericalSemigroup3289.2-16 AdjustmentOfNumericalSemigroup3299.2-17 IsAdditiveNumericalSemigroup3309.2-18 IsSuperSymmetricNumericalSemigroup3319.3 [33X[0;0YInvariants based on distances[133X3329.3-1 CatenaryDegreeOfSetOfFactorizations3339.3-2 AdjacentCatenaryDegreeOfSetOfFactorizations3349.3-3 EqualCatenaryDegreeOfSetOfFactorizations3359.3-4 MonotoneCatenaryDegreeOfSetOfFactorizations3369.3-5 CatenaryDegreeOfElementInNumericalSemigroup3379.3-6 TameDegreeOfSetOfFactorizations3389.3-7 CatenaryDegreeOfNumericalSemigroup3399.3-8 EqualPrimitiveElementsOfNumericalSemigroup3409.3-9 EqualCatenaryDegreeOfNumericalSemigroup3419.3-10 MonotonePrimitiveElementsOfNumericalSemigroup3429.3-11 MonotoneCatenaryDegreeOfNumericalSemigroup3439.3-12 TameDegreeOfNumericalSemigroup3449.3-13 TameDegreeOfElementInNumericalSemigroup3459.4 [33X[0;0YPrimality[133X3469.4-1 OmegaPrimalityOfElementInNumericalSemigroup3479.4-2 OmegaPrimalityOfElementListInNumericalSemigroup3489.4-3 OmegaPrimalityOfNumericalSemigroup3499.5 [33X[0;0YHomogenization of Numerical Semigroups[133X3509.5-1 BelongsToHomogenizationOfNumericalSemigroup3519.5-2 FactorizationsInHomogenizationOfNumericalSemigroup3529.5-3 HomogeneousBettiElementsOfNumericalSemigroup3539.5-4 HomogeneousCatenaryDegreeOfNumericalSemigroup3549.6 [33X[0;0YDivisors, posets[133X3559.6-1 MoebiusFunctionAssociatedToNumericalSemigroup3569.6-2 DivisorsOfElementInNumericalSemigroup3579.7 [33X[0;0YFeng-Rao distances and numbers[133X3589.7-1 FengRaoDistance3599.7-2 FengRaoNumber36010 [33X[0;0YPolynomials and numerical semigroups[133X36110.1 [33X[0;0YGenerating functions or Hilbert series[133X36210.1-1 NumericalSemigroupPolynomial36310.1-2 IsNumericalSemigroupPolynomial36410.1-3 NumericalSemigroupFromNumericalSemigroupPolynomial36510.1-4 HilbertSeriesOfNumericalSemigroup36610.1-5 GraeffePolynomial36710.1-6 IsCyclotomicPolynomial36810.1-7 IsKroneckerPolynomial36910.1-8 IsCyclotomicNumericalSemigroup37010.1-9 IsSelfReciprocalUnivariatePolynomial37110.2 [33X[0;0YSemigroup of values of algebraic curves[133X37210.2-1 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity37310.2-2 IsDeltaSequence37410.2-3 DeltaSequencesWithFrobeniusNumber37510.2-4 CurveAssociatedToDeltaSequence37610.2-5 SemigroupOfValuesOfPlaneCurve37710.2-6 SemigroupOfValuesOfCurve_Local37810.2-7 SemigroupOfValuesOfCurve_Global37910.2-8 GeneratorsModule_Global38010.2-9 GeneratorsKahlerDifferentials38110.2-10 IsMonomialNumericalSemigroup38211 [33X[0;0YAffine semigroups[133X38311.1 [33X[0;0YDefining affine semigroups[133X38411.1-1 AffineSemigroupByGenerators38511.1-2 AffineSemigroupByEquations38611.1-3 AffineSemigroupByInequalities38711.1-4 Generators38811.1-5 MinimalGenerators38911.1-6 AsAffineSemigroup39011.1-7 IsAffineSemigroup39111.1-8 BelongsToAffineSemigroup39211.1-9 IsFull39311.1-10 HilbertBasisOfSystemOfHomogeneousEquations39411.1-11 HilbertBasisOfSystemOfHomogeneousInequalities39511.1-12 EquationsOfGroupGeneratedBy39611.1-13 BasisOfGroupGivenByEquations39711.2 [33X[0;0YGluings of affine semigroups[133X39811.2-1 GluingOfAffineSemigroups39911.3 [33X[0;0YPresentations of affine semigroups[133X40011.3-1 GeneratorsOfKernelCongruence40111.3-2 CanonicalBasisOfKernelCongruence40211.3-3 GraverBasis40311.3-4 MinimalPresentationOfAffineSemigroup40411.3-5 BettiElementsOfAffineSemigroup40511.3-6 ShadedSetOfElementInAffineSemigroup40611.3-7 IsGeneric40711.3-8 IsUniquelyPresentedAffineSemigroup40811.3-9 PrimitiveElementsOfAffineSemigroup40911.4 [33X[0;0YFactorizations in affine semigroups[133X41011.4-1 FactorizationsVectorWRTList41111.4-2 ElasticityOfAffineSemigroup41211.4-3 DeltaSetOfAffineSemigroup41311.4-4 CatenaryDegreeOfAffineSemigroup41411.4-5 EqualCatenaryDegreeOfAffineSemigroup41511.4-6 HomogeneousCatenaryDegreeOfAffineSemigroup41611.4-7 MonotoneCatenaryDegreeOfAffineSemigroup41711.4-8 TameDegreeOfAffineSemigroup41811.4-9 OmegaPrimalityOfElementInAffineSemigroup41911.4-10 OmegaPrimalityOfAffineSemigroup42012 [33X[0;0YGood semigroups[133X42112.1 [33X[0;0YDefining good semigroups[133X42212.1-1 IsGoodSemigroup42312.1-2 NumericalSemigroupDuplication42412.1-3 AmalgamationOfNumericalSemigroups42512.1-4 CartesianProductOfNumericalSemigroups42612.1-5 GoodSemigroup42712.2 [33X[0;0YNotable elements[133X42812.2-1 BelongsToGoodSemigroup42912.2-2 Conductor43012.2-3 SmallElements43112.2-4 RepresentsSmallElementsOfGoodSemigroup43212.2-5 GoodSemigroupBySmallElements43312.2-6 MaximalElementsOfGoodSemigroup43412.2-7 IrreducibleMaximalElementsOfGoodSemigroup43512.2-8 GoodSemigroupByMaximalElements43612.2-9 MinimalGoodGeneratingSystemOfGoodSemigroup43712.2-10 MinimalGenerators43812.3 [33X[0;0YSymmetric semigroups[133X43912.3-1 IsSymmetricGoodSemigroup44012.3-2 ArfGoodSemigroupClosure44112.4 [33X[0;0YGood ideals[133X44212.4-1 GoodIdeal44312.4-2 GoodGeneratingSystemOfGoodIdeal44412.4-3 AmbientGoodSemigroupOfGoodIdeal44512.4-4 MinimalGoodGeneratingSystemOfGoodIdeal44612.4-5 BelongsToGoodIdeal44712.4-6 SmallElementsOfGoodIdeal44812.4-7 CanonicalIdealOfGoodSemigroup44913 [33X[0;0YExternal packages[133X45013.1 [33X[0;0YUsing external packages[133X45113.1-1 NumSgpsUse4ti245213.1-2 NumSgpsUse4ti2gap45313.1-3 NumSgpsUseNormalize45413.1-4 NumSgpsUseSingular45513.1-5 NumSgpsUseSingularInterface45613.1-6 NumSgpsUseSingularGradedModules457A [33X[0;0YGeneralities[133X458A.1 [33X[0;0YBézout sequences[133X459A.1-1 BezoutSequence460A.1-2 IsBezoutSequence461A.1-3 CeilingOfRational462A.2 [33X[0;0YPeriodic subadditive functions[133X463A.2-1 RepresentsPeriodicSubAdditiveFunction464A.2-2 IsListOfIntegersNS465B [33X[0;0Y"Random" functions[133X466B.1 [33X[0;0YRandom functions[133X467B.1-1 RandomNumericalSemigroup468B.1-2 RandomListForNS469B.1-3 RandomModularNumericalSemigroup470B.1-4 RandomProportionallyModularNumericalSemigroup471B.1-5 RandomListRepresentingSubAdditiveFunction472B.1-6 NumericalSemigroupWithRandomElementsAndFrobenius473C [33X[0;0YContributions[133X474C.1 [33X[0;0YFunctions implemented by A. Sammartano[133X475C.2 [33X[0;0YFunctions implemented by C. O'Neill[133X476C.3 [33X[0;0YFunctions implemented by K. Stokes[133X477C.4 [33X[0;0YFunctions implemented by I. Ojeda and C. J. Moreno Ávila[133X478C.5 [33X[0;0YFunctions implemented by A. Sánchez-R. Navarro[133X479C.6 [33X[0;0YFunctions implemented by G. Zito[133X480C.7 [33X[0;0YFunctions implemented by A. Herrera-Poyatos[133X481C.8 [33X[0;0YFunctions implemented by Benjamin Heredia[133X482C.9 [33X[0;0YFunctions implemented by Juan Ignacio García-García[133X483484485[32X486487488