Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563555 views
1
2
3
numericalsgps-- a package for numerical semigroups
4
5
6
Version 1.1.5
7
8
9
Manuel Delgado
10
11
Pedro A. García-Sánchez
12
13
José João Morais
14
15
16
17
Manuel Delgado
18
Email: mailto:[email protected]
19
Homepage: http://www.fc.up.pt/cmup/mdelgado
20
Pedro A. García-Sánchez
21
Email: mailto:[email protected]
22
Homepage: http://www.ugr.es/~pedro
23
24
-------------------------------------------------------
25
Copyright
26
© 2005--2015 Centro de Matemática da Universidade do Porto, Portugal and
27
Universidad de Granada, Spain
28
29
Numericalsgps is free software; you can redistribute it and/or modify it
30
under the terms of the GNU General Public License
31
(http://www.fsf.org/licenses/gpl.html) as published by the Free Software
32
Foundation; either version 2 of the License, or (at your option) any later
33
version.
34
35
36
-------------------------------------------------------
37
Acknowledgements
38
The first author's work was (partially) supported by the Centro de
39
Matemática da Universidade do Porto (CMUP), financed by FCT (Portugal)
40
through the programs POCTI (Programa Operacional "Ciência, Tecnologia,
41
Inovação") and POSI (Programa Operacional Sociedade da Informação), with
42
national and European Community structural funds and a sabbatical grant of
43
FCT.
44
45
The second author was supported by the projects MTM2004-01446, MTM2007-62346
46
and MTM2010-15595, the Junta de Andalucía group FQM-343, and FEDER founds.
47
48
The third author acknowledges financial support of FCT and the POCTI program
49
through a scholarship given by Centro de Matemática da Universidade do
50
Porto.
51
52
The authors wish to thank J. I. García-García and Alfredo Sánchez-R. Navarro
53
for many helpful discussions and for helping in the programming of
54
preliminary versions of some functions, and also to C. O'Neill, A.
55
Sammartano, I. Ojeda, C. M. Moreno Ávila, A. Herrera-Poyatos and K. Stokes
56
for their contributions (see Contributions Chapter). We are also in debt
57
with S. Gutsche, M. Horn, H. Schönemann, C. Söeger and M. Barakat for their
58
fruitful advices concerning 4ti2Interface, SingularInterface, Singular,
59
Normaliz, NormalizInterface and GradedModules.
60
61
The first and second authors warmly thank María Burgos for her support and
62
help.
63
64
Concerning the mantainment:
65
66
The first author was (partially) supported by the FCT project
67
PTDC/MAT/65481/2006 and also by the Centro de Matemática da Universidade do
68
Porto (CMUP), funded by the European Regional Development Fund through the
69
programme COMPETE and by the Portuguese Government through the FCT -
70
Fundação para a Ciência e a Tecnologia under the project
71
PEst-C/MAT/UI0144/2011.
72
73
The second author was/is supported by the project MTM2014-55367-P, which is
74
funded by Ministerio de Economía y Competitividad and the Fondo Europeo de
75
Desarrollo Regional FEDER.
76
77
Both maintainers want to acknowledge partial support by CMUP
78
(UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC)
79
and European structural funds through the programs FEDER, under the
80
partnership agreement PT2020.
81
82
Both maintainers are also supported by the project MTM2014-55367-P, which is
83
funded by Ministerio de Economía y Competitividad and Fondo Europeo de
84
Desarrollo Regional FEDER.
85
86
The maintainers want to thank the organizers of GAPDays in their several
87
editions.
88
89
The authors also thank the Centro de Servicios de Informática y Redes de
90
Comunicaciones (CSIRC), Universidad de Granada, for providing the computing
91
time, specially Rafael Arco Arredondo for installing everything this package
92
and the extra software needed in alhambra.ugr.es.
93
94
95
-------------------------------------------------------
96
Colophon
97
This work started when (in 2004) the first author visited the University of
98
Granada in part of a sabbatical year. Since Version 0.96 (released in 2008),
99
the package is maintained by the first two authors. Bug reports, suggestions
100
and comments are, of course, welcome. Please use our email addresses to this
101
effect.
102
103
If you have benefited from the use of the numerigalsgps GAP package in your
104
research, please cite it in addition to GAP itself, following the scheme
105
proposed in http://www.gap-system.org/Contacts/cite.html.
106
107
If you have predominantly used the functions in the Appendix, contributed by
108
other authors, please cite in addition these authors, referring "software
109
implementations available in the GAP package NumericalSgps".
110
111
112
-------------------------------------------------------
113
114
115
Contents (NumericalSgps)
116
117
1 Introduction
118
2 Numerical Semigroups
119
2.1 Generating Numerical Semigroups
120
2.1-1 NumericalSemigroupByGenerators
121
2.1-2 NumericalSemigroupBySubAdditiveFunction
122
2.1-3 NumericalSemigroupByAperyList
123
2.1-4 NumericalSemigroupBySmallElements
124
2.1-5 NumericalSemigroupByGaps
125
2.1-6 NumericalSemigroupByFundamentalGaps
126
2.1-7 NumericalSemigroupByAffineMap
127
2.1-8 ModularNumericalSemigroup
128
2.1-9 ProportionallyModularNumericalSemigroup
129
2.1-10 NumericalSemigroupByInterval
130
2.1-11 NumericalSemigroupByOpenInterval
131
2.2 Some basic tests
132
2.2-1 IsNumericalSemigroup
133
2.2-2 RepresentsSmallElementsOfNumericalSemigroup
134
2.2-3 RepresentsGapsOfNumericalSemigroup
135
2.2-4 IsAperyListOfNumericalSemigroup
136
2.2-5 IsSubsemigroupOfNumericalSemigroup
137
2.2-6 IsSubset
138
2.2-7 BelongsToNumericalSemigroup
139
3 Basic operations with numerical semigroups
140
3.1 Invariants
141
3.1-1 Multiplicity
142
3.1-2 GeneratorsOfNumericalSemigroup
143
3.1-3 EmbeddingDimension
144
3.1-4 SmallElements
145
3.1-5 FirstElementsOfNumericalSemigroup
146
3.1-6 RthElementOfNumericalSemigroup
147
3.1-7 AperyList
148
3.1-8 AperyList
149
3.1-9 AperyList
150
3.1-10 AperyListOfNumericalSemigroupAsGraph
151
3.1-11 KunzCoordinatesOfNumericalSemigroup
152
3.1-12 KunzPolytope
153
3.1-13 CocycleOfNumericalSemigroupWRTElement
154
3.1-14 FrobeniusNumber
155
3.1-15 Conductor
156
3.1-16 PseudoFrobeniusOfNumericalSemigroup
157
3.1-17 TypeOfNumericalSemigroup
158
3.1-18 Gaps
159
3.1-19 DesertsOfNumericalSemigroup
160
3.1-20 IsOrdinaryNumericalSemigroup
161
3.1-21 IsAcuteNumericalSemigroup
162
3.1-22 Holes
163
3.1-23 LatticePathAssociatedToNumericalSemigroup
164
3.1-24 Genus
165
3.1-25 FundamentalGaps
166
3.1-26 SpecialGaps
167
3.2 Wilf's conjecture
168
3.2-1 WilfNumber
169
3.2-2 EliahouNumber
170
3.2-3 ProfileOfNumericalSemigroup
171
3.2-4 EliahouSlicesOfNumericalSemigroup
172
4 Presentations of Numerical Semigroups
173
4.1 Presentations of Numerical Semigroups
174
4.1-1 MinimalPresentationOfNumericalSemigroup
175
4.1-2 GraphAssociatedToElementInNumericalSemigroup
176
4.1-3 BettiElementsOfNumericalSemigroup
177
4.1-4 PrimitiveElementsOfNumericalSemigroup
178
4.1-5 ShadedSetOfElementInNumericalSemigroup
179
4.2 Uniquely Presented Numerical Semigroups
180
4.2-1 IsUniquelyPresented
181
4.2-2 IsGeneric
182
5 Constructing numerical semigroups from others
183
5.1 Adding and removing elements of a numerical semigroup
184
5.1-1 RemoveMinimalGeneratorFromNumericalSemigroup
185
5.1-2 AddSpecialGapOfNumericalSemigroup
186
5.2 Intersections, and quotients and multiples by integers
187
5.2-1 Intersection
188
5.2-2 QuotientOfNumericalSemigroup
189
5.2-3 MultipleOfNumericalSemigroup
190
5.2-4 Difference
191
5.2-5 NumericalDuplication
192
5.2-6 InductiveNumericalSemigroup
193
5.3 Constructing the set of all numerical semigroups containing a given
194
numerical semigroup
195
5.3-1 OverSemigroupsNumericalSemigroup
196
5.4 Constructing the set of numerical semigroup with given Frobenius
197
number
198
5.4-1 NumericalSemigroupsWithFrobeniusNumber
199
5.5 Constructing the set of numerical semigroups with genus g, that is,
200
numerical semigroups with exactly g gaps
201
5.5-1 NumericalSemigroupsWithGenus
202
5.6 Constructing the set of numerical semigroups with a given set of
203
pseudo-Frobenius numbers
204
5.6-1 ForcedIntegersForPseudoFrobenius
205
5.6-2 SimpleForcedIntegersForPseudoFrobenius
206
5.6-3 NumericalSemigroupsWithPseudoFrobeniusNumbers
207
5.6-4 ANumericalSemigroupWithPseudoFrobeniusNumbers
208
6 Irreducible numerical semigroups
209
6.1 Irreducible numerical semigroups
210
6.1-1 IsIrreducibleNumericalSemigroup
211
6.1-2 IsSymmetricNumericalSemigroup
212
6.1-3 IsPseudoSymmetric
213
6.1-4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber
214
6.1-5 IrreducibleNumericalSemigroupsWithFrobeniusNumber
215
6.1-6 DecomposeIntoIrreducibles
216
6.2 Complete intersection numerical semigroups
217
6.2-1 AsGluingOfNumericalSemigroups
218
6.2-2 IsCompleteIntersection
219
6.2-3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber
220
6.2-4 IsFree
221
6.2-5 FreeNumericalSemigroupsWithFrobeniusNumber
222
6.2-6 IsTelescopic
223
6.2-7 TelescopicNumericalSemigroupsWithFrobeniusNumber
224
6.2-8 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity
225
6.2-9 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber
226
6.2-10 IsAperySetGammaRectangular
227
6.2-11 IsAperySetBetaRectangular
228
6.2-12 IsAperySetAlphaRectangular
229
6.3 Almost-symmetric numerical semigroups
230
6.3-1 AlmostSymmetricNumericalSemigroupsFromIrreducible
231
6.3-2 IsAlmostSymmetric
232
6.3-3 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber
233
7 Ideals of numerical semigroups
234
7.1 Definitions and basic operations
235
7.1-1 IdealOfNumericalSemigroup
236
7.1-2 IsIdealOfNumericalSemigroup
237
7.1-3 MinimalGenerators
238
7.1-4 Generators
239
7.1-5 AmbientNumericalSemigroupOfIdeal
240
7.1-6 IsIntegral
241
7.1-7 SmallElements
242
7.1-8 Conductor
243
7.1-9 Minimum
244
7.1-10 BelongsToIdealOfNumericalSemigroup
245
7.1-11 SumIdealsOfNumericalSemigroup
246
7.1-12 MultipleOfIdealOfNumericalSemigroup
247
7.1-13 SubtractIdealsOfNumericalSemigroup
248
7.1-14 Difference
249
7.1-15 TranslationOfIdealOfNumericalSemigroup
250
7.1-16 Intersection
251
7.1-17 MaximalIdealOfNumericalSemigroup
252
7.1-18 CanonicalIdealOfNumericalSemigroup
253
7.1-19 IsCanonicalIdeal
254
7.1-20 TypeSequenceOfNumericalSemigroup
255
7.2 Blow ups and closures
256
7.2-1 HilbertFunctionOfIdealOfNumericalSemigroup
257
7.2-2 BlowUpIdealOfNumericalSemigroup
258
7.2-3 ReductionNumber
259
7.2-4 BlowUpOfNumericalSemigroup
260
7.2-5 LipmanSemigroup
261
7.2-6 RatliffRushNumberOfIdealOfNumericalSemigroup
262
7.2-7 RatliffRushClosureOfIdealOfNumericalSemigroup
263
7.2-8 AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup
264
7.2-9 MultiplicitySequenceOfNumericalSemigroup
265
7.2-10 MicroInvariantsOfNumericalSemigroup
266
7.2-11 AperyListOfIdealOfNumericalSemigroupWRTElement
267
7.2-12 AperyTableOfNumericalSemigroup
268
7.2-13 StarClosureOfIdealOfNumericalSemigroup
269
7.3 Patterns for ideals
270
7.3-1 IsAdmissiblePattern
271
7.3-2 IsStronglyAdmissiblePattern
272
7.3-3 AsIdealOfNumericalSemigroup
273
7.3-4 BoundForConductorOfImageOfPattern
274
7.3-5 ApplyPatternToIdeal
275
7.3-6 ApplyPatternToNumericalSemigroup
276
7.3-7 IsAdmittedPatternByIdeal
277
7.3-8 IsAdmittedPatternByNumericalSemigroup
278
7.4 Graded associated ring of numerical semigroup
279
7.4-1 IsGradedAssociatedRingNumericalSemigroupCM
280
7.4-2 IsGradedAssociatedRingNumericalSemigroupBuchsbaum
281
7.4-3 TorsionOfAssociatedGradedRingNumericalSemigroup
282
7.4-4 BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup
283
7.4-5 IsMpure
284
7.4-6 IsPure
285
7.4-7 IsGradedAssociatedRingNumericalSemigroupGorenstein
286
7.4-8 IsGradedAssociatedRingNumericalSemigroupCI
287
8 Numerical semigroups with maximal embedding dimension
288
8.1 Numerical semigroups with maximal embedding dimension
289
8.1-1 IsMED
290
8.1-2 MEDNumericalSemigroupClosure
291
8.1-3 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup
292
8.2 Numerical semigroups with the Arf property and Arf closures
293
8.2-1 IsArf
294
8.2-2 ArfNumericalSemigroupClosure
295
8.2-3 ArfCharactersOfArfNumericalSemigroup
296
8.2-4 ArfNumericalSemigroupsWithFrobeniusNumber
297
8.2-5 ArfNumericalSemigroupsWithFrobeniusNumberUpTo
298
8.2-6 ArfNumericalSemigroupsWithGenus
299
8.2-7 ArfNumericalSemigroupsWithGenusUpTo
300
8.2-8 ArfNumericalSemigroupsWithGenusAndFrobeniusNumber
301
8.3 Saturated numerical semigroups
302
8.3-1 IsSaturated
303
8.3-2 SaturatedNumericalSemigroupClosure
304
8.3-3 SaturatedNumericalSemigroupsWithFrobeniusNumber
305
9 Nonunique invariants for factorizations in numerical semigroups
306
9.1 Factorizations in Numerical Semigroups
307
9.1-1 FactorizationsIntegerWRTList
308
9.1-2 FactorizationsElementWRTNumericalSemigroup
309
9.1-3 FactorizationsElementListWRTNumericalSemigroup
310
9.1-4 RClassesOfSetOfFactorizations
311
9.1-5 LShapesOfNumericalSemigroup
312
9.1-6 DenumerantOfElementInNumericalSemigroup
313
9.2 Invariants based on lengths
314
9.2-1 LengthsOfFactorizationsIntegerWRTList
315
9.2-2 LengthsOfFactorizationsElementWRTNumericalSemigroup
316
9.2-3 ElasticityOfFactorizationsElementWRTNumericalSemigroup
317
9.2-4 ElasticityOfNumericalSemigroup
318
9.2-5 DeltaSetOfSetOfIntegers
319
9.2-6 DeltaSetOfFactorizationsElementWRTNumericalSemigroup
320
9.2-7 DeltaSetPeriodicityBoundForNumericalSemigroup
321
9.2-8 DeltaSetPeriodicityStartForNumericalSemigroup
322
9.2-9 DeltaSetListUpToElementWRTNumericalSemigroup
323
9.2-10 DeltaSetUnionUpToElementWRTNumericalSemigroup
324
9.2-11 DeltaSetOfNumericalSemigroup
325
9.2-12 MaximumDegreeOfElementWRTNumericalSemigroup
326
9.2-13 MaximalDenumerantOfElementInNumericalSemigroup
327
9.2-14 MaximalDenumerantOfSetOfFactorizations
328
9.2-15 MaximalDenumerantOfNumericalSemigroup
329
9.2-16 AdjustmentOfNumericalSemigroup
330
9.2-17 IsAdditiveNumericalSemigroup
331
9.2-18 IsSuperSymmetricNumericalSemigroup
332
9.3 Invariants based on distances
333
9.3-1 CatenaryDegreeOfSetOfFactorizations
334
9.3-2 AdjacentCatenaryDegreeOfSetOfFactorizations
335
9.3-3 EqualCatenaryDegreeOfSetOfFactorizations
336
9.3-4 MonotoneCatenaryDegreeOfSetOfFactorizations
337
9.3-5 CatenaryDegreeOfElementInNumericalSemigroup
338
9.3-6 TameDegreeOfSetOfFactorizations
339
9.3-7 CatenaryDegreeOfNumericalSemigroup
340
9.3-8 EqualPrimitiveElementsOfNumericalSemigroup
341
9.3-9 EqualCatenaryDegreeOfNumericalSemigroup
342
9.3-10 MonotonePrimitiveElementsOfNumericalSemigroup
343
9.3-11 MonotoneCatenaryDegreeOfNumericalSemigroup
344
9.3-12 TameDegreeOfNumericalSemigroup
345
9.3-13 TameDegreeOfElementInNumericalSemigroup
346
9.4 Primality
347
9.4-1 OmegaPrimalityOfElementInNumericalSemigroup
348
9.4-2 OmegaPrimalityOfElementListInNumericalSemigroup
349
9.4-3 OmegaPrimalityOfNumericalSemigroup
350
9.5 Homogenization of Numerical Semigroups
351
9.5-1 BelongsToHomogenizationOfNumericalSemigroup
352
9.5-2 FactorizationsInHomogenizationOfNumericalSemigroup
353
9.5-3 HomogeneousBettiElementsOfNumericalSemigroup
354
9.5-4 HomogeneousCatenaryDegreeOfNumericalSemigroup
355
9.6 Divisors, posets
356
9.6-1 MoebiusFunctionAssociatedToNumericalSemigroup
357
9.6-2 DivisorsOfElementInNumericalSemigroup
358
9.7 Feng-Rao distances and numbers
359
9.7-1 FengRaoDistance
360
9.7-2 FengRaoNumber
361
10 Polynomials and numerical semigroups
362
10.1 Generating functions or Hilbert series
363
10.1-1 NumericalSemigroupPolynomial
364
10.1-2 IsNumericalSemigroupPolynomial
365
10.1-3 NumericalSemigroupFromNumericalSemigroupPolynomial
366
10.1-4 HilbertSeriesOfNumericalSemigroup
367
10.1-5 GraeffePolynomial
368
10.1-6 IsCyclotomicPolynomial
369
10.1-7 IsKroneckerPolynomial
370
10.1-8 IsCyclotomicNumericalSemigroup
371
10.1-9 IsSelfReciprocalUnivariatePolynomial
372
10.2 Semigroup of values of algebraic curves
373
10.2-1 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity
374
10.2-2 IsDeltaSequence
375
10.2-3 DeltaSequencesWithFrobeniusNumber
376
10.2-4 CurveAssociatedToDeltaSequence
377
10.2-5 SemigroupOfValuesOfPlaneCurve
378
10.2-6 SemigroupOfValuesOfCurve_Local
379
10.2-7 SemigroupOfValuesOfCurve_Global
380
10.2-8 GeneratorsModule_Global
381
10.2-9 GeneratorsKahlerDifferentials
382
10.2-10 IsMonomialNumericalSemigroup
383
11 Affine semigroups
384
11.1 Defining affine semigroups
385
11.1-1 AffineSemigroupByGenerators
386
11.1-2 AffineSemigroupByEquations
387
11.1-3 AffineSemigroupByInequalities
388
11.1-4 Generators
389
11.1-5 MinimalGenerators
390
11.1-6 AsAffineSemigroup
391
11.1-7 IsAffineSemigroup
392
11.1-8 BelongsToAffineSemigroup
393
11.1-9 IsFull
394
11.1-10 HilbertBasisOfSystemOfHomogeneousEquations
395
11.1-11 HilbertBasisOfSystemOfHomogeneousInequalities
396
11.1-12 EquationsOfGroupGeneratedBy
397
11.1-13 BasisOfGroupGivenByEquations
398
11.2 Gluings of affine semigroups
399
11.2-1 GluingOfAffineSemigroups
400
11.3 Presentations of affine semigroups
401
11.3-1 GeneratorsOfKernelCongruence
402
11.3-2 CanonicalBasisOfKernelCongruence
403
11.3-3 GraverBasis
404
11.3-4 MinimalPresentationOfAffineSemigroup
405
11.3-5 BettiElementsOfAffineSemigroup
406
11.3-6 ShadedSetOfElementInAffineSemigroup
407
11.3-7 IsGeneric
408
11.3-8 IsUniquelyPresentedAffineSemigroup
409
11.3-9 PrimitiveElementsOfAffineSemigroup
410
11.4 Factorizations in affine semigroups
411
11.4-1 FactorizationsVectorWRTList
412
11.4-2 ElasticityOfAffineSemigroup
413
11.4-3 DeltaSetOfAffineSemigroup
414
11.4-4 CatenaryDegreeOfAffineSemigroup
415
11.4-5 EqualCatenaryDegreeOfAffineSemigroup
416
11.4-6 HomogeneousCatenaryDegreeOfAffineSemigroup
417
11.4-7 MonotoneCatenaryDegreeOfAffineSemigroup
418
11.4-8 TameDegreeOfAffineSemigroup
419
11.4-9 OmegaPrimalityOfElementInAffineSemigroup
420
11.4-10 OmegaPrimalityOfAffineSemigroup
421
12 Good semigroups
422
12.1 Defining good semigroups
423
12.1-1 IsGoodSemigroup
424
12.1-2 NumericalSemigroupDuplication
425
12.1-3 AmalgamationOfNumericalSemigroups
426
12.1-4 CartesianProductOfNumericalSemigroups
427
12.1-5 GoodSemigroup
428
12.2 Notable elements
429
12.2-1 BelongsToGoodSemigroup
430
12.2-2 Conductor
431
12.2-3 SmallElements
432
12.2-4 RepresentsSmallElementsOfGoodSemigroup
433
12.2-5 GoodSemigroupBySmallElements
434
12.2-6 MaximalElementsOfGoodSemigroup
435
12.2-7 IrreducibleMaximalElementsOfGoodSemigroup
436
12.2-8 GoodSemigroupByMaximalElements
437
12.2-9 MinimalGoodGeneratingSystemOfGoodSemigroup
438
12.2-10 MinimalGenerators
439
12.3 Symmetric semigroups
440
12.3-1 IsSymmetricGoodSemigroup
441
12.3-2 ArfGoodSemigroupClosure
442
12.4 Good ideals
443
12.4-1 GoodIdeal
444
12.4-2 GoodGeneratingSystemOfGoodIdeal
445
12.4-3 AmbientGoodSemigroupOfGoodIdeal
446
12.4-4 MinimalGoodGeneratingSystemOfGoodIdeal
447
12.4-5 BelongsToGoodIdeal
448
12.4-6 SmallElementsOfGoodIdeal
449
12.4-7 CanonicalIdealOfGoodSemigroup
450
13 External packages
451
13.1 Using external packages
452
13.1-1 NumSgpsUse4ti2
453
13.1-2 NumSgpsUse4ti2gap
454
13.1-3 NumSgpsUseNormalize
455
13.1-4 NumSgpsUseSingular
456
13.1-5 NumSgpsUseSingularInterface
457
13.1-6 NumSgpsUseSingularGradedModules
458
A Generalities
459
A.1 Bézout sequences
460
A.1-1 BezoutSequence
461
A.1-2 IsBezoutSequence
462
A.1-3 CeilingOfRational
463
A.2 Periodic subadditive functions
464
A.2-1 RepresentsPeriodicSubAdditiveFunction
465
A.2-2 IsListOfIntegersNS
466
B "Random" functions
467
B.1 Random functions
468
B.1-1 RandomNumericalSemigroup
469
B.1-2 RandomListForNS
470
B.1-3 RandomModularNumericalSemigroup
471
B.1-4 RandomProportionallyModularNumericalSemigroup
472
B.1-5 RandomListRepresentingSubAdditiveFunction
473
B.1-6 NumericalSemigroupWithRandomElementsAndFrobenius
474
C Contributions
475
C.1 Functions implemented by A. Sammartano
476
C.2 Functions implemented by C. O'Neill
477
C.3 Functions implemented by K. Stokes
478
C.4 Functions implemented by I. Ojeda and C. J. Moreno Ávila
479
C.5 Functions implemented by A. Sánchez-R. Navarro
480
C.6 Functions implemented by G. Zito
481
C.7 Functions implemented by A. Herrera-Poyatos
482
C.8 Functions implemented by Benjamin Heredia
483
C.9 Functions implemented by Juan Ignacio García-García
484
485
486

487
488