GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#! @Chapter Examples and Tests #! @Section Spectral Sequences LoadPackage( "ModulePresentationsForCAP" ); LoadPackage( "HomologicalAlgebraForCAP" ); LoadPackage( "RingsForHomalg" ); #! @Example QQ := HomalgFieldOfRationalsInSingular( );; R := QQ * "x,y"; #! Q[x,y] SetRecursionTrapInterval( 10000 ); category := LeftPresentations( R ); #! Category of left presentations of Q[x,y] S := FreeLeftPresentation( 1, R ); #! <An object in Category of left presentations of Q[x,y]> object_func := function( i ) return S; end; #! function( i ) ... end morphism_func := function( i ) return IdentityMorphism( S ); end; #! function( i ) ... end C0 := ZFunctorObjectExtendedByInitialAndIdentity( object_func, morphism_func, category, 0, 4 ); #! <An object in Functors from integers into Category of left presentations of Q[x,y]> S2 := FreeLeftPresentation( 2, R ); #! <An object in Category of left presentations of Q[x,y]> C1 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S2, S ], 1 ) ], 2 ); #! <An object in Functors from integers into Category of left presentations of Q[x,y]> C1 := ZFunctorObjectExtendedByInitialAndIdentity( C1, 2, 3 ); #! <An object in Functors from integers into Category of left presentations of Q[x,y]> C2 := ZFunctorObjectFromMorphismList( [ InjectionOfCofactorOfDirectSum( [ S, S ], 1 ) ], 3 ); #! <An object in Functors from integers into Category of left presentations of Q[x,y]> C2 := ZFunctorObjectExtendedByInitialAndIdentity( C2, 3, 4 ); #! <An object in Functors from integers into Category of left presentations of Q[x,y]> delta_1_3 := PresentationMorphism( C1[3], HomalgMatrix( [ [ "x^2" ], [ "xy" ], [ "y^3"] ], 3, 1, R ), C0[3] ); #! <A morphism in Category of left presentations of Q[x,y]> delta_1_2 := PresentationMorphism( C1[2], HomalgMatrix( [ [ "x^2" ], [ "xy" ] ], 2, 1, R ), C0[2] ); #! <A morphism in Category of left presentations of Q[x,y]> delta1 := ZFunctorMorphism( C1, [ UniversalMorphismFromInitialObject( C0[1] ), UniversalMorphismFromInitialObject( C0[1] ), delta_1_2, delta_1_3 ], 0, C0 ); #! <A morphism in Functors from integers into Category of left presentations of Q[x,y]> delta1 := ZFunctorMorphismExtendedByInitialAndIdentity( delta1, 0, 3 ); #! <A morphism in Functors from integers into Category of left presentations of Q[x,y]> delta1 := AsAscendingFilteredMorphism( delta1 ); #! <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> delta_2_3 := PresentationMorphism( C2[3], HomalgMatrix( [ [ "y", "-x", "0" ] ], 1, 3, R ), C1[3] ); #! <A morphism in Category of left presentations of Q[x,y]> delta_2_4 := PresentationMorphism( C2[4], HomalgMatrix( [ [ "y", "-x", "0" ], [ "0", "y^2", "-x" ] ], 2, 3, R ), C1[4] ); #! <A morphism in Category of left presentations of Q[x,y]> delta2 := ZFunctorMorphism( C2, [ UniversalMorphismFromInitialObject( C1[2] ), delta_2_3, delta_2_4 ], 2, C1 ); #! <A morphism in Functors from integers into Category of left presentations of Q[x,y]> delta2 := ZFunctorMorphismExtendedByInitialAndIdentity( delta2, 2, 4 ); #! <A morphism in Functors from integers into Category of left presentations of Q[x,y]> delta2 := AsAscendingFilteredMorphism( delta2 ); #! <A morphism in Ascending filtered object category of Category of left presentations of Q[x,y]> SetIsAdditiveCategory( CategoryOfAscendingFilteredObjects( category ), true ); complex := ZFunctorObjectFromMorphismList( [ delta2, delta1 ], -2 ); #! <An object in Functors from integers into Ascending filtered object category of Category of left presentations of Q[x,y]> complex := AsComplex( complex ); #! <An object in Complex category of Ascending filtered object category of Category of left presentations of Q[x,y]> LessGenFunctor := FunctorLessGeneratorsLeft( R ); #! Less generators for Category of left presentations of Q[x,y] s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 0, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 1 matrix) s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 1, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 1 matrix) s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 2, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 1 matrix) s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 3, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! x*y, #! x^2 s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 4, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! x*y, #! x^2, #! y^3 s := SpectralSequenceEntryOfAscendingFilteredComplex( complex, 5, 0, 0 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! x*y, #! x^2, #! y^3 s := SpectralSequenceDifferentialOfAscendingFilteredComplex( complex, 3, 3, -2 ); #! <A morphism in Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); #! y^3 AscToDescFunctor := AscendingToDescendingFilteredObjectFunctor( category ); #! Ascending to descending filtered object functor of Category of left presentations of Q[x,y] cocomplex := ZFunctorObjectFromMorphismList( [ ApplyFunctor( AscToDescFunctor, delta2 ), ApplyFunctor( AscToDescFunctor, delta1 ) ], -2 ); #! <An object in Functors from integers into Descending filtered object category of Category of left presentations of Q[x,y]> SetIsAdditiveCategory( CategoryOfDescendingFilteredObjects( category ), true ); cocomplex := AsCocomplex( cocomplex ); #! <An object in Cocomplex category of Descending filtered object category of Category of left presentations of Q[x,y]> s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 0, -2, 1 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 2 matrix) s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 1, -2, 1 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 2 matrix) s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! -y,x s := SpectralSequenceEntryOfDescendingFilteredCocomplex( cocomplex, 3, -2, 1 ); #! <A morphism in Generalized morphism category of Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, UnderlyingHonestObject( Source( s ) ) ) ) ); #! (an empty 0 x 0 matrix) s := SpectralSequenceDifferentialOfDescendingFilteredCocomplex( cocomplex, 2, -2, 1 ); #! <A morphism in Category of left presentations of Q[x,y]> Display( UnderlyingMatrix( ApplyFunctor( LessGenFunctor, s ) ) ); #! x^2, #! x*y #! @EndExample