Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563554 views
1
2
1 Generalized Morphism Category
3
4
Let \mathbf{A} be an abelian category. We denote its generalized morphism
5
category by \mathbf{G(A)}.
6
7
8
1.1 GAP Categories
9
10
1.1-1 IsGeneralizedMorphismCategoryObject
11
12
IsGeneralizedMorphismCategoryObject( object )  filter
13
Returns: true or false
14
15
The GAP category of objects in the generalized morphism category.
16
17
1.1-2 IsGeneralizedMorphism
18
19
IsGeneralizedMorphism( object )  filter
20
Returns: true or false
21
22
The GAP category of morphisms in the generalized morphism category.
23
24
25
1.2 Attributes
26
27
1.2-1 UnderlyingHonestObject
28
29
UnderlyingHonestObject( a )  attribute
30
Returns: an object in \mathbf{A}
31
32
The argument is an object a in the generalized morphism category. The output
33
is its underlying honest object
34
35
1.2-2 DomainOfGeneralizedMorphism
36
37
DomainOfGeneralizedMorphism( alpha )  attribute
38
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}( d, a )
39
40
The argument is a generalized morphism \alpha: a \rightarrow b. The output
41
is its domain d \hookrightarrow a \in \mathbf{A}.
42
43
1.2-3 Codomain
44
45
Codomain( alpha )  attribute
46
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}( b, c )
47
48
The argument is a generalized morphism \alpha: a \rightarrow b. The output
49
is its codomain b \twoheadrightarrow c \in \mathbf{A}.
50
51
1.2-4 AssociatedMorphism
52
53
AssociatedMorphism( alpha )  attribute
54
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}( d, c )
55
56
The argument is a generalized morphism \alpha: a \rightarrow b. The output
57
is its associated morphism d \rightarrow c \in \mathbf{A}.
58
59
1.2-5 DomainAssociatedMorphismCodomainTriple
60
61
DomainAssociatedMorphismCodomainTriple( alpha )  attribute
62
Returns: a triple of morphisms in \mathbf{A}
63
64
The argument is a generalized morphism \alpha: a \rightarrow b. The output
65
is a triple ( d \hookrightarrow a, d \rightarrow c, b \twoheadrightarrow c )
66
consisting of its domain, associated morphism, and codomain.
67
68
1.2-6 HonestRepresentative
69
70
HonestRepresentative( alpha )  attribute
71
Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}( a, b )
72
73
The argument is a generalized morphism \alpha: a \rightarrow b. The output
74
is the honest representative in \mathbf{A} of \alpha, if it exists,
75
otherwise an error is thrown.
76
77
1.2-7 GeneralizedInverse
78
79
GeneralizedInverse( alpha )  operation
80
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)
81
82
The argument is a morphism \alpha: a \rightarrow b \in \mathbf{A}. The
83
output is its generalized inverse b \rightarrow a.
84
85
1.2-8 IdempotentDefinedBySubobject
86
87
IdempotentDefinedBySubobject( alpha )  operation
88
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
89
90
The argument is a subobject \alpha: a \hookrightarrow b \in \mathbf{A}. The
91
output is the idempotent b \rightarrow b \in \mathbf{G(A)} defined by
92
\alpha.
93
94
1.2-9 IdempotentDefinedByFactorobject
95
96
IdempotentDefinedByFactorobject( alpha )  operation
97
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)
98
99
The argument is a factorobject \alpha: b \twoheadrightarrow a \in
100
\mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)}
101
defined by \alpha.
102
103
1.2-10 UnderlyingHonestCategory
104
105
UnderlyingHonestCategory( C )  attribute
106
Returns: a category
107
108
The argument is a generalized morphism category C = \mathbf{G(A)}. The
109
output is \mathbf{A}.
110
111
112
1.3 Operations
113
114
1.3-1 GeneralizedMorphismFromFactorToSubobject
115
116
GeneralizedMorphismFromFactorToSubobject( beta, alpha )  operation
117
Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(c,a)
118
119
The arguments are a a factorobject \beta: b \twoheadrightarrow c, and a
120
subobject \alpha: a \hookrightarrow b. The output is the generalized
121
morphism from the factorobject to the subobject.
122
123
1.3-2 CommonRestriction
124
125
CommonRestriction( L )  operation
126
Returns: a list of generalized morphisms
127
128
The argument is a list L of generalized morphisms by three arrows having the
129
same source. The output is a list of generalized morphisms by three arrows
130
which is the comman restriction of L.
131
132
1.3-3 ConcatenationProduct
133
134
ConcatenationProduct( L )  operation
135
Returns: a generalized moprhism
136
137
The argument is a list L = ( \alpha_1, \dots, \alpha_n ) of generalized
138
morphisms (with same data structures). The output is their concatenation
139
product, i.e., a generalized morphism \alpha with
140
\mathrm{UnderlyingHonestObject}( \mathrm{Source}( \alpha ) ) =
141
\bigoplus_{i=1}^n \mathrm{UnderlyingHonestObject}( \mathrm{Source}( \alpha_i
142
) ), and \mathrm{UnderlyingHonestObject}( \mathrm{Range}( \alpha ) ) =
143
\bigoplus_{i=1}^n \mathrm{UnderlyingHonestObject}( \mathrm{Range}( \alpha_i
144
) ), and with morphisms in the representation of \alpha given as the direct
145
sums of the corresponding morphisms of the \alpha_i.
146
147
148
1.4 Properties
149
150
1.4-1 IsHonest
151
152
IsHonest( alpha )  property
153
Returns: a boolean
154
155
The argument is a generalized morphism \alpha. The output is true if \alpha
156
admits an honest representative, otherwise false.
157
158
1.4-2 HasFullDomain
159
160
HasFullDomain( alpha )  property
161
Returns: a boolean
162
163
The argument is a generalized morphism \alpha. The output is true if the
164
domain of \alpha is an isomorphism, otherwise false.
165
166
1.4-3 HasFullCodomain
167
168
HasFullCodomain( alpha )  property
169
Returns: a boolean
170
171
The argument is a generalized morphism \alpha. The output is true if the
172
codomain of \alpha is an isomorphism, otherwise false.
173
174
1.4-4 IsSingleValued
175
176
IsSingleValued( alpha )  property
177
Returns: a boolean
178
179
The argument is a generalized morphism \alpha. The output is true if the
180
codomain of \alpha is an isomorphism, otherwise false.
181
182
1.4-5 IsTotal
183
184
IsTotal( alpha )  property
185
Returns: a boolean
186
187
The argument is a generalized morphism \alpha. The output is true if the
188
domain of \alpha is an isomorphism, otherwise false.
189
190
191
1.5 Convenience methods
192
193
This section contains operations which, depending on the current generalized
194
morphism standard of the system and the category, might point to other
195
Operations. Please use them only as convenience and never in serious code.
196
197
1.5-1 GeneralizedMorphismCategory
198
199
GeneralizedMorphismCategory( C )  operation
200
Returns: a category
201
202
Creates a new category of generalized morphisms. Might point to
203
GeneralizedMorphismCategoryByThreeArrows,
204
GeneralizedMorphismCategoryByCospans, or GeneralizedMorphismCategoryBySpans
205
206
1.5-2 GeneralizedMorphismObject
207
208
GeneralizedMorphismObject( A )  operation
209
Returns: an object in the generalized morphism category
210
211
Creates an object in the current generalized morphism category, depending on
212
the standard
213
214
1.5-3 AsGeneralizedMorphism
215
216
AsGeneralizedMorphism( phi )  operation
217
Returns: a generalized morphism
218
219
Returns the corresponding morphism to phi in the current generalized
220
morphism category.
221
222
1.5-4 GeneralizedMorphism
223
224
GeneralizedMorphism( phi, psi )  operation
225
Returns: a generalized morphism
226
227
Returns the corresponding morphism to phi and psi in the current generalized
228
morphism category.
229
230
1.5-5 GeneralizedMorphism
231
232
GeneralizedMorphism( iota, phi, pi )  operation
233
Returns: a generalized morphism
234
235
Returns the corresponding morphism to iota, phi and psi in the current
236
generalized morphism category.
237
238
1.5-6 GeneralizedMorphismWithRangeAid
239
240
GeneralizedMorphismWithRangeAid( arg1, arg2 )  operation
241
242
Returns a generalized morphism with range aid by three arrows or by span, or
243
a generalized morphism by cospan, depending on the standard.
244
245
1.5-7 GeneralizedMorphismWithSourceAid
246
247
GeneralizedMorphismWithSourceAid( arg1, arg2 )  operation
248
249
Returns a generalized morphism with source aid by three arrows or by cospan,
250
or a generalized morphism by span, depending on the standard.
251
252
253