GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
LoadPackage( "GradedRingForHomalg" ); R := HomalgFieldOfRationalsInDefaultCAS( ) * "x0,x1,x2"; S := GradedRing( R ); A := KoszulDualRing( S, "e0,e1,e2" ); LoadPackage( "GradedModules" ); ## the residue class field (i.e. S modulo the maximal homogeneous ideal) k := HomalgMatrix( Indeterminates( S ), Length( Indeterminates( S ) ), 1, S ); k := LeftPresentationWithDegrees( k ); ## the sheaf supported on a point p := HomalgMatrix( Indeterminates( S ){[ 1 .. Length( Indeterminates( S ) ) - 1 ]}, 1, Length( Indeterminates( S ) ) - 1, S ); p := RightPresentationWithDegrees( p ); ## the sheaf supported on a line l := HomalgMatrix( Indeterminates( S ){[ 1 .. Length( Indeterminates( S ) ) - 2 ]}, 1, Length( Indeterminates( S ) ) - 2, S ); l := RightPresentationWithDegrees( l ); ## the twisted line bundle O(a) O := a -> S^a; ## the cotangent bundle cotangent := SyzygiesObject( 2, k ); ## the canonical bundle omega := S^(-2-1); ## from [ Decker, Eisenbud ] M := HomalgMatrix( "[ x0^2, x1^2 ]", 1, 2, S ); M := RightPresentationWithDegrees( M ); m := SubmoduleGeneratedByHomogeneousPart( CastelnuovoMumfordRegularity( M ), M ); N := HomalgMatrix( "[ x0^2, x1^2, x2^2 ]", 1, 3, S ); N := RightPresentationWithDegrees( N ); N2 := SubmoduleGeneratedByHomogeneousPart( 2, M ); tate := TateResolution( cotangent, -5, 5 ); betti := BettiTable( tate ); Assert( 0, MatrixOfDiagram( betti ) = [ [ 48, 35, 24, 15, 8, 3, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 3, 8, 15, 24 ] ] ); Display( betti );