GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<Verb>BettiNumber(K,n):: SimplicialComplex, Int --> Int</Verb>1<Verb>BettiNumber(K,n):: PureCubicalComplex, Int --> Int</Verb>2<Verb>BettiNumber(K,n):: CubicalComplex, Int --> Int</Verb>3<Verb>BettiNumber(K,n):: PurePermComplex, Int --> Int</Verb>4<Verb>BettiNumber(K,n):: RegCWComplex, Int --> Int</Verb>5<Verb>BettiNumber(K,n):: ChainComplex, Int --> Int</Verb>6<Verb>BettiNumber(K,n):: SparseChainComplex, Int --> Int</Verb>7<Verb>BettiNumber(K,n,p):: SimplicialComplex, Int, Int --> Int</Verb>8<Verb>BettiNumber(K,n,p):: PureCubicalComplex, Int, Int --> Int</Verb>9<Verb>BettiNumber(K,n,p):: CubicalComplex, Int, Int --> Int</Verb>10<Verb>BettiNumber(K,n,p):: PurePermComplex, Int, Int --> Int</Verb>11<Verb>BettiNumber(K,n,p):: RegCWComplex, Int, Int --> Int</Verb>1213141516<P/>Inputs a simplicial, cubical, pure cubical, pure permutahedral,17regular CW, chain or sparse chain complex18<M>K</M> together with an integer <M>n \ge 0</M> and returns the <M>n</M>th19Betti number of <M>K</M>.2021<P/>Inputs a simplicial, cubical, pure cubical, pure permutahedral or22regular CW-complex23<M>K</M> together with an integer <M>n \ge 0</M> and a prime <M>p \ge 0</M> or24<M>p=0</M>. In this case the <M>n</M>th25Betti number of <M>K</M> over a field of characteristic <M>p</M> is returned.262728293031