Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563571 views
############################################################################
##
##  HomalgSubmodule.gi                                       Modules package
##
##  Copyright 2007-2010 Mohamed Barakat, University of Kaiserslautern
##
##  Implementations for homalg submodules.
##
#############################################################################

####################################
#
# families and types:
#
####################################

# two new types:
BindGlobal( "TheTypeHomalgLeftFinitelyGeneratedSubmodule",
        NewType( TheFamilyOfHomalgModules,
                IsFinitelyPresentedSubmoduleRep and IsHomalgLeftObjectOrMorphismOfLeftObjects ) );

BindGlobal( "TheTypeHomalgRightFinitelyGeneratedSubmodule",
        NewType( TheFamilyOfHomalgModules,
                IsFinitelyPresentedSubmoduleRep and IsHomalgRightObjectOrMorphismOfRightObjects ) );

####################################
#
# methods for operations:
#
####################################

##
InstallMethod( SetsOfGenerators,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    
    return SetsOfGenerators( UnderlyingObject( M ) );
    
end );

##
InstallMethod( NrGenerators,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    local phi, g;
    
    if HasEmbeddingInSuperObject( M ) then
        TryNextMethod( );
    fi;
    
    phi := MorphismHavingSubobjectAsItsImage( M );
    
    g := NrGenerators( Source( phi ) );
    
    if g = 0 then
        SetIsZero( M, true );
    elif IsFinitelyPresentedModuleOrSubmoduleRep( M ) and
      HasRankOfObject( M ) and RankOfObject( M ) = g then
        SetIsFree( M, true );
    fi;
    
    return g;
    
end );

##
InstallMethod( HasNrGenerators,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    
    if HasEmbeddingInSuperObject( M ) then
        TryNextMethod( );
    fi;
    
    return true;
    
end );

##
InstallMethod( SetsOfRelations,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    
    return SetsOfRelations( UnderlyingObject( M ) );
    
end );

##
InstallMethod( HasNrRelations,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    
    if HasEmbeddingInSuperObject( M ) then
        TryNextMethod( );
    fi;
    
    return fail;
    
end );

##
InstallMethod( PositionOfTheDefaultPresentation,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    
    return PositionOfTheDefaultPresentation( UnderlyingObject( M ) );
    
end );

##
InstallMethod( MatrixOfSubobjectGenerators,
        "for homalg submodules",
        [ IsStaticFinitelyPresentedSubobjectRep ],
  function( M )
    
    return MatrixOfMap( MorphismHavingSubobjectAsItsImage( M ) );
    
end );

##
InstallMethod( DecideZero,
        "for homalg modules",
        [ IsHomalgMatrix, IsFinitelyPresentedSubmoduleRep and ConstructedAsAnIdeal ],
        
  function( mat, N )
    
    return DecideZero( mat, MatrixOfGenerators( N ) );
    
end );

##
InstallMethod( DecideZero,
        "for homalg modules",
        [ IsRingElement, IsFinitelyPresentedSubmoduleRep and ConstructedAsAnIdeal ],
        
  function( r, N )
    
    return DecideZero( r, MatrixOfGenerators( N ) );
    
end );

##
InstallMethod( OnBasisOfPresentation,
        "for homalg modules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( N )
    local M, phi;
    
    M := SuperObject( N );
    
    if not ( HasNrRelations( M ) and NrRelations( M ) = 0 ) then
        OnLessGenerators( UnderlyingObject( N ) );
        return N;
    fi;
    
    ## the super object M is free and currently presented on free generators
    
    phi := MorphismHavingSubobjectAsItsImage( N );
    
    phi := MatrixOfMap( phi );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( N ) then
        phi := BasisOfRowModule( phi );
    else
        phi := BasisOfColumnModule( phi );
    fi;
    
    phi := HomalgMap( phi, "free", M );
    
    if HasEmbeddingInSuperObject( N ) then
        
        phi := ImageObjectEmb( phi );
        phi := phi / EmbeddingInSuperObject( N );	## lift
        
        Assert( 4, IsEpimorphism( phi ) );
        
        SetIsEpimorphism( phi, true );
        
        ## this will have a side effect on Source( EmbeddingInSuperObject( N ) )
        AsEpimorphicImage( phi );
        
    else
        ## psssssss, noone saw that ;-)
        Add( N!.map_having_subobject_as_its_image_old, N!.map_having_subobject_as_its_image );
        N!.map_having_subobject_as_its_image := phi;
    fi;
    
    return N;
    
end );

##
InstallMethod( OnLessGenerators,
        "for homalg modules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( N )
    local M, phi;
    
    M := SuperObject( N );
    
    if not ( HasNrRelations( M ) and NrRelations( M ) = 0 ) then
        OnLessGenerators( UnderlyingObject( N ) );
        return N;
    fi;
    
    ## the super object M is free and currently presented on free generators
    
    phi := MorphismHavingSubobjectAsItsImage( N );
    
    phi := MatrixOfMap( phi );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( N ) then
        phi := ReducedBasisOfRowModule( phi );
    else
        phi := ReducedBasisOfColumnModule( phi );
    fi;
    
    phi := HomalgMap( phi, "free", M );
    
    if HasEmbeddingInSuperObject( N ) then
        
        phi := ImageObjectEmb( phi );
        phi := phi / EmbeddingInSuperObject( N );	## lift
        
        Assert( 4, IsEpimorphism( phi ) );
        
        SetIsEpimorphism( phi, true );
        
        ## this will have a side effect on Source( EmbeddingInSuperObject( N ) )
        AsEpimorphicImage( phi );
        
    else
        ## psssssss, noone saw that ;-)
        Add( N!.map_having_subobject_as_its_image_old, N!.map_having_subobject_as_its_image );
        N!.map_having_subobject_as_its_image := phi;
    fi;
    
    return N;
    
end );

##
InstallOtherMethod( \*,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep, IsFinitelyPresentedSubmoduleRep ],
        
  function( I, J )
    local super, genI, genJ;
    
    super := SuperObject( I );
    
    if not IsIdenticalObj( super, SuperObject( J ) ) then
        Error( "the super objects must coincide\n" );
    elif not ( ConstructedAsAnIdeal( I ) and ConstructedAsAnIdeal( J ) ) then
        Error( "can only multiply ideals in a common ring\n" );
    fi;
    
    genI := MatrixOfSubobjectGenerators( I );
    genJ := MatrixOfSubobjectGenerators( J );
    
    return Subobject( KroneckerMat( genI, genJ ), super );
    
end );

##
InstallOtherMethod( POW,
        "for homalg submodules",
        [ IsStaticFinitelyPresentedSubobjectRep, IsInt ],
        
  function( I, pow )
    
    if pow < 0 then
        
        Error( "negative powers are not defined\n" );
        
    elif pow = 0 then
        
        return FullSubobject( SuperObject( I ) );
        
    elif pow = 1 then
        
        return I;
        
    else
        
        return Iterated( ListWithIdenticalEntries( pow, I ), \* );
        
    fi;
    
end );

##
InstallMethod( IsSubset,
        "for homalg submodules",
        [ IsHomalgModule, IsFinitelyPresentedSubmoduleRep ],
        
  function( K, J )	## GAP-standard: is J a subset of K
    local M, mapJ, mapK, rel, red;
    
    M := SuperObject( J );
    
    if not IsFinitelyPresentedSubmoduleRep( K ) then
        return IsIdenticalObj( M, K );
    fi;
    
    if not IsIdenticalObj( M, SuperObject( K ) ) then
        Error( "the super objects must coincide\n" );
    fi;
    
    mapJ := MatrixOfSubobjectGenerators( J );
    mapK := MatrixOfSubobjectGenerators( K );
    
    rel := MatrixOfRelations( M );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( J ) then
        mapK := UnionOfRows( mapK, rel );
        mapK := BasisOfRowModule( mapK );
        red := DecideZeroRows( mapJ, mapK );
    else
        mapK := UnionOfColumns( mapK, rel );
        mapK := BasisOfColumnModule( mapK );
        red := DecideZeroColumns( mapJ, mapK );
    fi;
    
    return IsZero( red );
    
end );

##
InstallMethod( \+,
        "for homalg subobjects of static objects",
        [ IsStaticFinitelyPresentedSubobjectRep, IsStaticFinitelyPresentedSubobjectRep ],
        
  function( K, J )
    local M, mapK, mapJ, sum;
    
    M := SuperObject( J );
    
    if not IsIdenticalObj( M, SuperObject( K ) ) then
        Error( "the super objects must coincide\n" );
    fi;
    
    mapK := MatrixOfSubobjectGenerators( K );
    mapJ := MatrixOfSubobjectGenerators( J );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( J ) then
        sum := UnionOfRows( mapK, mapJ );
    else
        sum := UnionOfColumns( mapK, mapJ );
    fi;
    
    return Subobject( sum, M );
    
end );

##
InstallMethod( MatchPropertiesAndAttributesOfSubobjectAndUnderlyingObject,
        "for a submodule and its underlying module",
        [ IsFinitelyPresentedSubmoduleRep, IsFinitelyPresentedModuleRep ],
        
  function( I, M )
    
    ## we don't check if M is the underlying object of I
    ## to avoid infinite loops as EmbeddingInSuperObject
    ## will be invoked
    if ConstructedAsAnIdeal( I ) then
        
        MatchPropertiesAndAttributes( I, M,
                LIMOD.intrinsic_properties_shared_with_subobjects_and_ideals,
                LIMOD.intrinsic_attributes_shared_with_subobjects_and_ideals );
        
    else
        
        MatchPropertiesAndAttributes( I, M,
                LIMOD.intrinsic_properties_shared_with_subobjects_which_are_not_ideals,
                LIMOD.intrinsic_attributes_shared_with_subobjects_which_are_not_ideals );
        
    fi;
    
end );

##
InstallMethod( \in,
        "for an element and an ideal",
        [ IsRingElement, IsStaticFinitelyPresentedSubobjectRep and ConstructedAsAnIdeal ],
        
  function( r, I )
    
    r := HomalgMatrix( [ r ], 1, 1, HomalgRing( r ) );
    
    r := Subobject( r, SuperObject( I ) );
    
    return IsSubset( I, r );
    
end );

##
InstallMethod( RadicalIdealMembership,
        "for an element and an ideal",
        [ IsHomalgRingElement, IsFinitelyPresentedSubmoduleRep and ConstructedAsAnIdeal ],
        
  function( r, I )
    local R, R_Rab, r_Rab, indets, Rabinovich_element, F, phi;
    
    R := HomalgRing( r );
    
    if not ( IsIdenticalObj( 1 * R, SuperObject( I ) ) or IsIdenticalObj( R * 1, SuperObject( I ) ) ) then
        
        Error( "the element and the ideal are not in the same ring" );
        
    fi;
    
    R_Rab := R * "RadicalTestVariable";
    
    r_Rab := r / R_Rab;
    
    indets := Indeterminates( R_Rab );
    
    Rabinovich_element := indets[ Length( indets ) ] * r_Rab - One( R_Rab );
    
    F := R_Rab * SuperObject( I );
    
    Rabinovich_element := HomalgMap( HomalgMatrix( [ Rabinovich_element ], 1, 1, R_Rab ), F, F );
    
    phi := R_Rab * I!.map_having_subobject_as_its_image;
    
    phi := CoproductMorphism( phi, Rabinovich_element );
    
    return IsZero( Cokernel( phi ) );
    
end );

####################################
#
# constructor functions and methods:
#
####################################

##
InstallOtherMethod( \*,
        "for homalg submodules",
        [ IsHomalgRing, IsFinitelyPresentedSubmoduleRep ], 10001,
        
  function( R, M )
    
    return ImageSubobject( R * OnAFreeSource( MorphismHavingSubobjectAsItsImage( M ) ) );
    
end );

##  <#GAPDoc Label="Subobject:matrix">
##  <ManSection>
##    <Oper Arg="mat,M" Name="Subobject" Label="constructor for submodules using matrices"/>
##    <Returns>a &homalg; submodule</Returns>
##    <Description>
##      This constructor returns the finitely generated left/right submodule of the &homalg; module <A>M</A> with generators given by the
##      rows/columns of the &homalg; matrix <A>mat</A>.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( Subobject,
        "constructor for homalg submodules",
        [ IsHomalgMatrix, IsFinitelyPresentedModuleRep ],
        
  function( gen, M )
    local gen_map;
    
    if not IsIdenticalObj( HomalgRing( gen ), HomalgRing( M ) ) then
        Error( "the matrix and the module are not defined over identically the same ring\n" );
    fi;
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
        if NrColumns( gen ) <> NrGenerators( M ) then
            Error( "the first argument is matrix with ", NrColumns( gen )," columns while the second argument is a module on ", NrGenerators( M ), " generators\n" );
        fi;
    else
        if NrRows( gen ) <> NrGenerators( M ) then
            Error( "the first argument is matrix with ", NrRows( gen )," rows while the second argument is a module on ", NrGenerators( M ), " generators\n" );
        fi;
    fi;
    
    gen_map := HomalgMap( gen, "free", M  );
    
    return ImageSubobject( gen_map );
    
end );

##  <#GAPDoc Label="Subobject:list">
##  <ManSection>
##    <Oper Arg="gens,M" Name="Subobject" Label="constructor for submodules using a list of ring elements"/>
##    <Returns>a &homalg; submodule</Returns>
##    <Description>
##      This constructor returns the finitely generated left/right submodule of the &homalg; cyclic left/right module <A>M</A>
##      with generators given by the entries of the list <A>gens</A>.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( Subobject,
        "constructor for homalg submodules",
        [ IsList, IsHomalgModule ],
        
  function( gens, M )
    local l, R, mat;
    
    if NrGenerators( M ) <> 1 then
        Error( "the given module is either not cyclic or not presented on a cyclic generator\n" );
    fi;
    
    l := Length( gens );
    
    if l = 0 then
        return FullSubobject( M );
    fi;
    
    if not ForAll( gens, IsRingElement ) then
        Error( "all entries of the list must be ring elements\n" );
    fi;
    
    R := HomalgRing( M );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
        mat := HomalgMatrix( gens, l, 1, R );
    else
        mat := HomalgMatrix( gens, 1, l, R );
    fi;
    
    return Subobject( mat, M );
    
end );

##
InstallMethod( Subobject,	## in case the methods below do not apply
        "constructor for homalg submodules",
        [ IsHomalgRelations, IsFinitelyPresentedModuleRep ],
        
  function( rel, M )
    
    Error( "the set of relations and the module should either be both left or both right\n" );
    
end );

##
InstallMethod( Subobject,
        "constructor for homalg submodules",
        [ IsHomalgRelations and IsHomalgRelationsOfRightModule, IsFinitelyPresentedModuleRep and IsHomalgRightObjectOrMorphismOfRightObjects ],
        
  function( rel, M )
    
    return Subobject( MatrixOfRelations( rel ), M );
    
end );

##
InstallMethod( Subobject,
        "constructor for homalg submodules",
        [ IsHomalgRelations and IsHomalgRelationsOfLeftModule, IsFinitelyPresentedModuleRep and IsHomalgLeftObjectOrMorphismOfLeftObjects ],
        
  function( rel, M )
    
    return Subobject( MatrixOfRelations( rel ), M );
    
end );

##  <#GAPDoc Label="LeftSubmodule">
##  <ManSection>
##    <Oper Arg="mat" Name="LeftSubmodule" Label="constructor for left submodules"/>
##    <Returns>a &homalg; submodule</Returns>
##    <Description>
##      This constructor returns the finitely generated left submodule with generators given by the
##      rows of the &homalg; matrix <A>mat</A>.
##      <Listing Type="Code"><![CDATA[
InstallMethod( LeftSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgMatrix ],
        
  function( gen )
    local R;
    
    R := HomalgRing( gen );
    
    return Subobject( gen, NrColumns( gen ) * R );
    
end );
##  ]]></Listing>
##      <Example><![CDATA[
##  gap> Z4 := HomalgRingOfIntegers( ) / 4;
##  Z/( 4 )
##  gap> I := HomalgMatrix( "[ 2 ]", 1, 1, Z4 );
##  <A 1 x 1 matrix over a residue class ring>
##  gap> I := LeftSubmodule( I );
##  <A principal torsion-free (left) ideal given by a cyclic generator>
##  gap> IsFree( I );
##  false
##  gap> I;
##  <A principal reflexive non-projective (left) ideal given by a cyclic generator\
##  >
##  ]]></Example>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>

##
InstallMethod( LeftSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgRing ],
        
  function( R )
    
    return FullSubobject( 1 * R );
    
end );

##
InstallMethod( LeftSubmodule,
        "constructor for homalg ideals",
        [ IsList ],
        
  function( gen )
    local R;
    
    if gen = [ ] then
        Error( "an empty list of ring elements\n" );
    elif not ForAll( gen, IsRingElement ) then
        Error( "a list of ring elements is expected\n" );
    fi;
    
    R := HomalgRing( gen[1] );
    
    return LeftSubmodule( HomalgMatrix( gen, Length( gen ), 1, R ) );
    
end );

##
InstallMethod( LeftSubmodule,
        "constructor for homalg ideals",
        [ IsRingElement ],
        
  function( f )
    
    if not IsBound( f!.LeftSubmodule ) then
        f!.LeftSubmodule := LeftSubmodule( [ f ] );
    fi;
    
    return f!.LeftSubmodule;
    
end );

##
InstallMethod( LeftSubmodule,
        "constructor for homalg ideals",
        [ IsList, IsHomalgRing ],
        
  function( gen, R )
    local Gen;
    
    if gen = [ ] then
        return ZeroLeftSubmodule( R );
    fi;
    
    Gen := List( gen,
                 function( r )
                   if IsString( r ) then
                       return HomalgRingElement( r, R );
                   elif IsRingElement( r ) then
                       return r;
                   else
                       Error( r, " is neither a string nor a ring element\n" );
                   fi;
                 end );
    
    return LeftSubmodule( HomalgMatrix( Gen, Length( Gen ), 1, R ) );
    
end );

##
InstallMethod( LeftSubmodule,
        "constructor for homalg ideals",
        [ IsString, IsHomalgRing ],
        
  function( gen, R )
    local Gen;
    
    if gen = [ ] then
        return ZeroLeftSubmodule( R );
    fi;
    
    Gen := ShallowCopy( gen );
    
    RemoveCharacters( Gen, "[]" );
    
    return LeftSubmodule( SplitString( Gen, "," ), R );
    
end );

##
InstallMethod( ZeroLeftSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgRing ],
        
  function( R )
    
    return ZeroSubobject( 1 * R );
    
end );

##  <#GAPDoc Label="RightSubmodule">
##  <ManSection>
##    <Oper Arg="mat" Name="RightSubmodule" Label="constructor for right submodules"/>
##    <Returns>a &homalg; submodule</Returns>
##    <Description>
##      This constructor returns the finitely generated right submodule with generators given by the
##      columns of the &homalg; matrix <A>mat</A>.
##      <Listing Type="Code"><![CDATA[
InstallMethod( RightSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgMatrix ],
        
  function( gen )
    local R;
    
    R := HomalgRing( gen );
    
    return Subobject( gen, R * NrRows( gen ) );
    
end );
##  ]]></Listing>
##      <Example><![CDATA[
##  gap> Z4 := HomalgRingOfIntegers( ) / 4;
##  Z/( 4 )
##  gap> I := HomalgMatrix( "[ 2 ]", 1, 1, Z4 );
##  <A 1 x 1 matrix over a residue class ring>
##  gap> I := RightSubmodule( I );
##  <A principal torsion-free (right) ideal given by a cyclic generator>
##  gap> IsFree( I );
##  false
##  gap> I;
##  <A principal reflexive non-projective (right) ideal given by a cyclic generato\
##  r>
##  ]]></Example>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>

##
InstallMethod( RightSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgRing ],
        
  function( R )
    
    return FullSubobject( R * 1 );
    
end );

##
InstallMethod( RightSubmodule,
        "constructor for homalg ideals",
        [ IsList ],
        
  function( gen )
    local R;
    
    if gen = [ ] then
        Error( "an empty list of ring elements\n" );
    elif not ForAll( gen, IsRingElement ) then
        Error( "a list of ring elements is expected\n" );
    fi;
    
    R := HomalgRing( gen[1] );
    
    return RightSubmodule( HomalgMatrix( gen, 1, Length( gen ), R ) );
    
end );

##
InstallMethod( RightSubmodule,
        "constructor for homalg ideals",
        [ IsRingElement ],
        
  function( f )
    
    if not IsBound( f!.RightSubmodule ) then
        f!.RightSubmodule := RightSubmodule( [ f ] );
    fi;
    
    return f!.RightSubmodule;
    
end );

##
InstallMethod( RightSubmodule,
        "constructor for homalg ideals",
        [ IsList, IsHomalgRing ],
        
  function( gen, R )
    local Gen;
    
    if gen = [ ] then
        return ZeroRightSubmodule( R );
    fi;
    
    Gen := List( gen,
                 function( r )
                   if IsString( r ) then
                       return HomalgRingElement( r, R );
                   elif IsRingElement( r ) then
                       return r;
                   else
                       Error( r, " is neither a string nor a ring element\n" );
                   fi;
                 end );
    
    return RightSubmodule( HomalgMatrix( Gen, 1, Length( Gen ), R ) );
    
end );

##
InstallMethod( RightSubmodule,
        "constructor for homalg ideals",
        [ IsString, IsHomalgRing ],
        
  function( gen, R )
    local Gen;
    
    if gen = [ ] then
        return ZeroRightSubmodule( R );
    fi;
    
    Gen := ShallowCopy( gen );
    
    RemoveCharacters( Gen, "[]" );
    
    return RightSubmodule( SplitString( Gen, "," ), R );
    
end );

##
InstallMethod( ZeroRightSubmodule,
        "constructor for homalg submodules",
        [ IsHomalgRing ],
        
  function( R )
    
    return ZeroSubobject( R * 1 );
    
end );

##
InstallMethod( LeftIdealOfMinors,
        "constructor for homalg ideals",
        [ IsInt, IsHomalgMatrix ],
        
  function( d, M )
    local minors, R;
    
    minors := Minors( d, M );
    
    R := HomalgRing( M );
    
    if minors = [ One( R ) ] then
        return LeftSubmodule( R );
    elif minors = [ Zero( R ) ] then
        return ZeroLeftSubmodule( R );
    fi;
    
    return LeftSubmodule( minors, R );
    
end );

##
InstallMethod( LeftIdealOfMaximalMinors,
        "constructor for homalg ideals",
        [ IsHomalgMatrix ],
        
  function( M )
    local minors, R;
    
    minors := MaximalMinors( M );
    
    R := HomalgRing( M );
    
    if minors = [ One( R ) ] then
        return LeftSubmodule( R );
    elif minors = [ Zero( R ) ] then
        return ZeroLeftSubmodule( R );
    fi;
    
    return LeftSubmodule( minors, HomalgRing( M ) );
    
end );

##
InstallMethod( RightIdealOfMinors,
        "constructor for homalg ideals",
        [ IsInt, IsHomalgMatrix ],
        
  function( d, M )
    local minors, R;
    
    minors := Minors( d, M );
    
    R := HomalgRing( M );
    
    if minors = [ One( R ) ] then
        return RightSubmodule( R );
    elif minors = [ Zero( R ) ] then
        return ZeroRightSubmodule( R );
    fi;
    
    return RightSubmodule( minors, HomalgRing( M ) );
    
end );

##
InstallMethod( RightIdealOfMaximalMinors,
        "constructor for homalg ideals",
        [ IsHomalgMatrix ],
        
  function( M )
    local minors, R;
    
    minors := MaximalMinors( M );
    
    R := HomalgRing( M );
    
    if minors = [ One( R ) ] then
        return RightSubmodule( R );
    elif minors = [ Zero( R ) ] then
        return ZeroRightSubmodule( R );
    fi;
    
    return RightSubmodule( MaximalMinors( M ), HomalgRing( M ) );
    
end );

####################################
#
# View, Print, and Display methods:
#
####################################

##
InstallMethod( ViewString,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep and IsFree ], 1001, ## since we don't use the filter IsHomalgLeftObjectOrMorphismOfLeftObjects it is good to set the ranks high
        
  function( J )
    local s, R, vs, r, rk, l;
    
    s := "";
    
    ## NrGenerators might set IsZero to true
    NrGenerators( J );
    
    if HasIsZero( J ) and IsZero( J ) then
        return ViewString( J );
    fi;
    
    R := HomalgRing( J );
    
    vs := HasIsDivisionRingForHomalg( R ) and IsDivisionRingForHomalg( R );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( J ) then
        if vs then
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                   and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true then
                    Append( s, " " );
                else
                    Append( s, " (left) " );
                fi;
            else
                Append( s, " left " );
            fi;
            Append( s, "vector subspace" );
        elif ConstructedAsAnIdeal( J ) then
            Append( s, " principal " );
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if not ( IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                         and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true ) then
                    Append( s, "(left) " );
                fi;
            else
                Append( s, "left " );
            fi;
            Append( s, "ideal" );
        else
            Append( s, " free left submodule" );
        fi;
    else
        if vs then
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                   and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true then
                    Append( s, " " );
                else
                    Append( s, " (right) " );
                fi;
            else
                Append( s, " right " );
            fi;
            Append( s, "vector subspace" );
        elif ConstructedAsAnIdeal( J ) then
            Append( s, " principal " );
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if not ( IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                         and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true ) then
                    Append( s, "(right) " );
                fi;
            else
                Append( s, "right " );
            fi;
            Append( s, "ideal" );
        else
            Append( s, " free right submodule" );
        fi;
    fi;
    
    r := NrGenerators( J );
    
    if HasRankOfObject( J ) then
        rk := RankOfObject( J );
        if vs then
            s := Concatenation( s, " of dimension " );
        else
            s := Concatenation( s, " of rank " );
        fi;
        s := Concatenation( s, String( rk ), " on " );
        if r = rk then
            if r = 1 then
                Append( s, "a free generator" );
            else
                Append( s, "free generators" );
            fi;
        else ## => r > 1
            s := Concatenation( s, String( r ), " non-free generators" );
            if HasNrRelations( J ) = true then
                l := NrRelations( J );
                Append( s, " satisfying " );
                if l = 1 then
                    Append( s, "a single relation" );
                else
                    s:= Concatenation( s, String( l ), " relations" );
                fi;
            fi;
        fi;
    else
        if r = 1 then
            Append( s, " given by a cyclic generator"  );
        else
            s := Concatenation( s, " given by ", String( r ), " generators"  );
        fi;
        if HasNrRelations( J ) = true then
            l := NrRelations( J );
            if l = 0 then
                SetRankOfObject( J, r );
                return ViewString( J );
            fi;
            Append( s, " satisfying " );
            if l = 1 then
                Append( s, "a single relation" );
            else
                s := Concatenation( s, String( l ), " relations" );
            fi;
        fi;
    fi;
    
    return s;
    
end );

##
InstallMethod( ViewString,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep and IsZero ], 1001, ## since we don't use the filter IsHomalgLeftObjectOrMorphismOfLeftObjects it is good to set the ranks high
        
  function( J )
    local R, vs, s;
    
    R := HomalgRing( J );
    
    vs := HasIsDivisionRingForHomalg( R ) and IsDivisionRingForHomalg( R );
    
    s := " zero ";
    
    if not ( IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
             and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true ) then
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( J ) then
            Append( s, "(left) " );
        else
            Append( s, "(right) " );
        fi;
    fi;
    
    if vs then
        return Concatenation( s, "vector subspace" );
    elif ConstructedAsAnIdeal( J ) then
        return Concatenation( s, "ideal" );
    else
        return Concatenation( s, "submodule" );
    fi;
    
end );

##
InstallMethod( Display,
        "for homalg submodules",
        [ IsFinitelyPresentedSubmoduleRep ],
        
  function( M )
    local R, gen, l;
    
    R := HomalgRing( M );
    
    gen := MatrixOfSubobjectGenerators( M );
    
    Display( gen );
    
    Print( "\nA" );
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
        l := NrRows( gen );
        if ConstructedAsAnIdeal( M ) then
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                   and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true then
                    Print( "n" );
                else
                    Print( " (left)" );
                fi;
            else
                Print( " left" );
            fi;
            Print( " ideal generated by the " );
            if l = 1 then
                Print( "entry" );
            else
                Print( l, " entries" );
            fi;
        else
            Print( " left submodule generated by the " );
            if l = 1 then
                Print( "row" );
            else
                Print( l, " rows" );
            fi;
        fi;
        Print( " of the above matrix\n" );
    else
        l := NrColumns( gen );
        if ConstructedAsAnIdeal( M ) then
            if HasIsCommutative( R ) and IsCommutative( R ) then
                if IsBound( HOMALG.SuppressParityInViewObjForCommutativeStructureObjects )
                   and HOMALG.SuppressParityInViewObjForCommutativeStructureObjects = true then
                    Print( "n" );
                else
                    Print( " (right)" );
                fi;
            else
                Print( " right" );
            fi;
            Print( " ideal generated by the " );
            if l = 1 then
                Print( "entry" );
            else
                Print( l, " entries" );
            fi;
        else
            Print( " right submodule generated by the " );
            if l = 1 then
                Print( "column" );
            else
                Print( l, " columns" );
            fi;
        fi;
        Print( " of the above matrix\n" );
    fi;
    
end );