Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563554 views
#############################################################################
##
#W  preliminaries.gi        Manuel Delgado <[email protected]>
#W                          Pedro A. Garcia-Sanchez <[email protected]>
#W                          Jose Morais <[email protected]>
##
##
#Y  Copyright 2005 by Manuel Delgado,
#Y  Pedro Garcia-Sanchez and Jose Joao Morais
#Y  We adopt the copyright regulations of GAP as detailed in the
#Y  copyright notice in the GAP manual.
##
#############################################################################


#############################################################################
##
#F  BezoutSequence(arg)
##
##  Computes a Bezout sequence with ends two given rational numbers which may
##  be given as a list of two rationals.
##  Warning: rational numbers are silently transformed into
##  irreducible fractions.
##
#############################################################################
InstallGlobalFunction(BezoutSequence, function(arg)
  local  r, s, a1, b1, a2, b2, bz, AD, BD, i, AC, BC, z, A, B;

  if IsList(arg[1]) then
    r := arg[1][1];
    s := arg[1][2];
  else
    r := arg[1];
    s := arg[2];
  fi;
  if not (IsRat(r) and IsRat(s) and r<s) then
    Error("The arguments r<s of BezoutSequence must be rationals");
  fi;
  a1 := NumeratorRat(r);
  b1 := DenominatorRat(r);
  a2 := NumeratorRat(s);
  b2 := DenominatorRat(s);

  if a1<b1 or a2<b2 then
    bz := BezoutSequence(r+1,s+1);
    return List(bz, x->x-1);
  fi;

  ################# The Decreasing sequence############
  AD := [a1];
  BD := [b1];
  i := 1;
  while BD[i] <> 1 do
    AD[i+1] := 1/BD[i] mod AD[i];
    BD[i+1] := -1/AD[i] mod BD[i];
    i:= i+1;
  od;
  ################# The increasing sequence############
  AC := [a2];
  BC := [b2];
  i := 1;
  while AC[i] <> 1 do
    if BC[i] <> 1 then
      AC[i+1] := -1/BC[i] mod AC[i];
      BC[i+1] := 1/AC[i] mod BC[i];
      i:= i+1;
    elif BC[i] = 1 then
      AC[i+1] := AC[i]-1;
      BC[i+1] := 1;
      i:= i+1;
    fi;
  od;

  ################# The construction...###################
  z := [];
  A := Concatenation(AD,Reversed(AC));
  B := Concatenation(BD,Reversed(BC));
  for i in [1..Length(AD)] do
    Add(z,A[i]/B[i]);
  od;
  for i in [Length(AD)+1..Length(A)] do
    if not A[i]/B[i] in z then
      Add(z,A[i]/B[i]);
    else
      z := z{[1..Position(z,A[i]/B[i])]};
    fi;

  od;

  return z;
end);



#############################################################################
##
#F  IsBezoutSequence(L)
##
##  Tests if a sequence is a Bezout sequence.
##
#############################################################################
InstallGlobalFunction(IsBezoutSequence, function(L)
  local  i;

  if not (IsList(L) and ForAll(L, x -> IsRat(x))) then
    return false; # Error("The argument must be a list of rational numbers");
  fi;

  if L=[] or Minimum(L)<0 then
    return false;
  fi;
  for i in [1..Length(L)-1] do
    if NumeratorRat(L[i+1])*DenominatorRat(L[i])-
       NumeratorRat(L[i])*DenominatorRat(L[i+1]) <> 1 then
      Print("Take the ",i," and the ",i+1," elements of the sequence","\n");
      return false;
    fi;
  od;
  return true;
end);


#############################################################################
##
#F  RepresentsPeriodicSubAdditiveFunction(L)
##
##  Tests whether a list L of length m represents a subadditive function f
##  periodic of period m. To avoid defining f(0) (which we assume to be 0) we
##  define f(m)=0 and so the last element of the list must be 0.
##  This technical need is due to the fact that <position>
##  in a list must be positive (not a 0).
##
#############################################################################
InstallGlobalFunction(RepresentsPeriodicSubAdditiveFunction, function(L)
  local  m, i, j, k;

  if not IsListOfIntegersNS(L) then
    return false; #Error("The argument must be a non empty list of integers");
  fi;

  m := Length(L);
  if not L[m] = 0 then
    return false;
  fi;

  if Minimum(L)<0 then
    return false;
  fi;

  for i in [1..m] do
    for j in [1..m] do
      k := (i+j) mod m;
      if k = 0 then
        k := m;
      fi;

      if L[k] > L[i] + L[j] then
        return false;
      fi;
    od;
  od;
  return true;
end);




#############################################################################
##
#F  RepresentsSmallElementsOfNumericalSemigroup(L)
##
##  Tests if a list (which has to be a set) may represent the "small"
##  elements of a numerical semigroup.
##
#############################################################################
InstallGlobalFunction(RepresentsSmallElementsOfNumericalSemigroup, function(L)
  local  L0, sum, max, n, m, p;

  if not IsListOfIntegersNS(L) or Minimum(L)<0 then
    return false; #Error("The argument must be a nonempty list of positive integers");
  fi;

  if not Set(L) = L or not 0 in L then
    return false;
  fi;

  L0 := Difference(L,[0]);
  sum := [];
  max := Maximum(L);

  for n in L0 do
    for m in L0 do
      p := m+n;
      if p < max then 
        if not p in L then
          return false;
        fi;
      else
        break;
      fi;       
    od;
  od;
  return true;
end);


#############################################################################
##
#F  CeilingOfRational(R)
##
##  Computes the smallest integer greater than a rational r/s.
##
#############################################################################
InstallGlobalFunction(CeilingOfRational, function(R)
  local  r, s;

  if not IsRat(R) then
    Error("R must be  rational");
  fi;
  r := NumeratorRat(R);
  s := DenominatorRat(R);

  if IsInt(R) then
    return R;
  elif R < 0 then
    return Int(R);
  else
    return Int(R) + 1;
  fi;
end);

#############################################################################
##
#F  IsListOfIntegersNS(list)
##
##  Tests whether L is a nonempty list integers.
##
#############################################################################
InstallGlobalFunction(IsListOfIntegersNS, function(list)
  if not(IsList(list)) then 
    return false;
  fi;

  if list <> [] then
    if IsInt(list[1]) then
      if IsHomogeneousList(list) then
        return true;
      fi;
    fi;
  fi;
  return false;
end);

#############################################################################
##
#F  IsAperyListOfNumericalSemigroup(L)
##
##  Tests whether a list may represent the Apery set of a numerical semigroup.
##
#############################################################################
InstallGlobalFunction(IsAperyListOfNumericalSemigroup, function(L)
  local  m, firstToLastPosition, K, i, j, k;

  #if not (IsList(L) and ForAll(L, i -> IsInt(i))) then
  if not(IsListOfIntegersNS(L)) then
    return false; #Error("The argument of IsAperyListOfNumericalSemigroup must be a nonempty list of integers\n");
  fi;

  if Minimum(L)<0 then
    return false;
  fi;

  m := Length(L);

  #####################################################################
  # Moves the first element of a list to the end of the list
  firstToLastPosition := function(L)
    local mL;
    if Length(L) = 1 or Length(L) = 0 then
      mL := L;
    else
      mL :=  L{[2..Length(L)]};
      Add(mL,L[1]);
    fi;
    return mL;
  end;
  ## end of local function ##
  K := List(L, i-> i mod m);
  if K <> [0.. m-1] then
    return false;
  fi;
  #	K := firstToLastPosition(Set(L));
  K := firstToLastPosition(L);
  for i in [1..m] do
    for j in [1..m] do
      k := (i+j) mod m;
      if k = 0 then
        k := m;
      fi;

      if K[k] > K[i] + K[j] then
        return false;
      fi;
    od;
  od;
  return true;
end);