Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563622 views
1
<?xml version="1.0" encoding="UTF-8"?>
2
3
<!--
4
5
examples.xml SCO package documentation Simon Goertzen
6
7
8
Copyright (C) 2007-2008, Lehrstuhl B für Mathematik, RWTH-Aachen
9
10
This chapter gives examples on the usage of this package.
11
12
-->
13
14
<Chapter Label="examples"><Heading>Examples</Heading>
15
16
Although there are some small examples embedded in chapter <Ref
17
Chap="ch:MandF"/>, we will give some complete examples in this
18
chapter. Most of these could easily be called with the example script
19
mentioned in chapter <Ref Chap="usage"/>, but we will do them step by
20
step for best reproducability.
21
22
<Section><Heading>Example 1: Klein Bottle</Heading>
23
Suppose we want to calculate the cohomology of the Klein
24
Bottle. First, we need a triangulation.
25
26
It could look like this:
27
28
<Alt Only="LaTeX">
29
\begin{figure}[htbp]
30
\begin{center}
31
\includegraphics{files/pgt}
32
\caption{triangulation}
33
\end{center}
34
\end{figure}
35
</Alt>
36
37
<Alt Not="LaTeX">
38
<Listing>
39
1--2--3--1
40
|\ |\ |\ |
41
| \| \| \|
42
4--5--6--4
43
|\ |\ |\ |
44
| \| \| \|
45
7--8--9--7
46
|\ |\ |\ |
47
| \| \| \|
48
1--3--2--1
49
</Listing>
50
</Alt>
51
52
<P/>
53
This results in the following list of maximum simplices:
54
55
<Example>
56
gap> M := [ [1,2,4], [1,2,7], [1,3,6], [1,3,8], [1,4,6], [1,7,8],
57
> [2,3,5], [2,3,9], [2,4,5], [2,7,9], [3,5,6], [3,8,9],
58
> [4,5,7], [4,6,9], [4,7,9], [5,6,8], [5,7,8], [6,8,9] ];;
59
</Example>
60
61
As there is no isotropy and therefore no <M>\mu</M>-map, we can
62
continue with the orbifold triangulation and simplicial set:
63
64
<Example><![CDATA[
65
gap> ot := OrbifoldTriangulation( M, "Klein Bottle" );
66
<OrbifoldTriangulation "Klein Bottle" of dimension 2. 18 simplices on 9 vertic\
67
es without Isotropy>
68
gap> ss := SimplicialSet( ot );
69
<The simplicial set of the orbifold triangulation "Klein Bottle", computed up \
70
to dimension 0 with Length vector [ 18 ]>
71
]]></Example>
72
73
Now we will need a &homalg; ring. As this is a small example we can
74
compute directly over &ZZ;, so we can use &GAP;. In case you have
75
&RingsForHomalg; installed you might want to try computing in another
76
computer algebra system with the command
77
<C>HomalgRingOfIntegersInCAS()</C>, replacing "CAS" with the
78
corresponding system.
79
80
<Example><![CDATA[
81
gap> R := HomalgRingOfIntegers();
82
Z
83
]]></Example>
84
85
We are almost there. Let us create some coboundary matrices and compute
86
their cohomology:
87
88
<Example><![CDATA[
89
gap> c := CreateCoboundaryMatrices( ss, 4, R );;
90
gap> C := Cohomology( c, R );
91
----------------------------------------------->>>> Z^(1 x 1)
92
----------------------------------------------->>>> Z^(1 x 1)
93
----------------------------------------------->>>> Z/< 2 >
94
----------------------------------------------->>>> 0
95
----------------------------------------------->>>> 0
96
<A graded cohomology object consisting of 5 left modules at degrees
97
[ 0 .. 4 ]>
98
]]></Example>
99
100
This is the cohomology of the Klein Bottle.
101
102
</Section>
103
104
<Section><Heading>Example 2: <M>V_4</M></Heading>
105
106
&SCO; can also be used to compute group cohomology, as every group can
107
be represented as an orbifold with just a single point. For
108
<M>V_4</M>, it would look like this:
109
110
<Example><![CDATA[
111
gap> M := [ [1] ];;
112
gap> V4 := Group( (1,2), (3,4) );;
113
gap> iso := rec( 1 := V4 );;
114
gap> ot := OrbifoldTriangulation( M, iso, "V4" );
115
<OrbifoldTriangulation "V4" of dimension 0. 1 simplex on 1 vertex with Isotrop\
116
y on 1 vertex>
117
gap> ss := SimplicialSet( ot );
118
<The simplicial set of the orbifold triangulation "V4", computed up to dimensi\
119
on 0 with Length vector [ 1 ]>
120
gap> R := HomalgRingOfIntegers();
121
Z
122
gap> c := CreateCoboundaryMatrices( ss, 4, R );;
123
gap> C := Cohomology( c, R );
124
----------------------------------------------->>>> Z^(1 x 1)
125
----------------------------------------------->>>> 0
126
----------------------------------------------->>>> Z/< 2 > + Z/< 2 >
127
----------------------------------------------->>>> Z/< 2 >
128
----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2\
129
>
130
<A graded cohomology object consisting of 5 left modules at degrees
131
[ 0 .. 4 ]>
132
]]></Example>
133
134
This is the <M>V_4</M> group cohomology up to degree 4.
135
136
</Section>
137
138
<Section><Heading>Example 3: The "Teardrop" orbifold</Heading>
139
140
You have seen a manifold in example 1, and group cohomology in example
141
2. Now we will meet our first proper orbifold, the Teardrop. This is
142
the example Moerdijk and Pronk used in their paper <Cite
143
Key="MP_SCO"/> on which my work is based. It is an easy example, but
144
includes both nontrivial isotropy and <M>\mu</M>-maps. We take the
145
isotropy at the top to be <M>C_2</M>.
146
147
The triangulation looks like this, with the gluing being at [1,3].
148
149
<Alt Only="LaTeX">
150
\begin{figure}[htbp]
151
\begin{center}
152
\includegraphics{files/Teardrop}
153
\caption{triangulation}
154
\end{center}
155
\end{figure}
156
</Alt>
157
158
<Alt Not="LaTeX">
159
<Listing>
160
3=====1=====3
161
/ \ / \ / \
162
/ \ / \ / \
163
5-----2-----4-----5
164
\ /
165
\ /
166
5
167
</Listing>
168
</Alt>
169
170
<P/>The source code:
171
172
<Example><![CDATA[
173
gap> M := [ [1,2,3], [1,2,4], [1,3,4], [2,3,5], [2,4,5], [3,4,5] ];;
174
gap> iso := rec( 1 := Group( (1,2) ) );;
175
gap> mu := [
176
> [ [3], [1,3], [1,2,3], [1,3,4], x -> (1,2) ],
177
> [ [3], [1,3], [1,3,4], [1,2,3], x -> (1,2) ]
178
> ];;
179
gap> ot := OrbifoldTriangulation( M, iso, mu, "Teardrop" );
180
<OrbifoldTriangulation "Teardrop" of dimension 2. 6 simplices on 5 vertices wi\
181
th Isotropy on 1 vertex and nontrivial mu-maps>
182
gap> ss := SimplicialSet( ot );
183
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
184
imension 0 with Length vector [ 6 ]>
185
gap> R := HomalgRingOfIntegers();
186
Z
187
gap> c := CreateCoboundaryMatrices( ss, 6, R );;
188
gap> C := Cohomology( c, R );
189
----------------------------------------------->>>> Z^(1 x 1)
190
----------------------------------------------->>>> 0
191
----------------------------------------------->>>> Z^(1 x 1)
192
----------------------------------------------->>>> 0
193
----------------------------------------------->>>> Z/< 2 >
194
----------------------------------------------->>>> 0
195
----------------------------------------------->>>> Z/< 2 >
196
<A graded cohomology object consisting of 7 left modules at degrees
197
[ 0 .. 6 ]>
198
]]></Example>
199
200
This is the Teardrop cohomology.
201
202
</Section>
203
204
</Chapter>
205
206