Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563554 views
1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
%%
3
%W schurextension.tex GAP documentation D�rte Feichtenschlager
4
%%
5
%H $Id: schurextension.tex, v 0.5 2010/05/31 09:30:00 gap SymbCompCC $
6
%%
7
8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9
\Chapter{Schur extensions for p-power-poly-pcp-groups}
10
11
In this chapter we describe how the consistent pp-presentations
12
of infinite coclass sequences can be used to compute a pp-presentation for
13
the corresponding Schur extensions (see \cite{EF11}).
14
15
For a group $G = F/R$ the Schur extension $H$ is defined as $H = F/[F,R]$
16
(see \cite{EN08}).
17
18
So for a parameter <x> that can take values in the positive integers, let
19
$(G_x = F/R_x | x \in \N)$, for $\N$ the positive integers, describe an
20
infinite coclass sequence of finite $p$-groups $G_X$ of coclass $r$. Then for
21
each value for the parameter <x>, the group $G_x$ has a consistent polycyclic
22
presentation with generators $g_1, ..., g_n, t_1, ..., t_d$ and relations
23
24
%display{nontext}
25
$$
26
\eqalign{
27
&\, g_i^p = rel[i][i],\cr
28
&\, t_i^{expo} = rel[n+i][n+i],\cr
29
&\, g_i^{g_j} = rel[j][i],\cr
30
&\, t_i^{g_j} = rel[j][n+i],\cr
31
&\, t_i^{t_j} = 1.
32
}
33
$$
34
%display{text}
35
%g_i^p = rel[i][i],
36
%t_i^{expo} = rel[n+i][n+i],
37
%g_i^{g_j} = rel[j][i],
38
%t_i^{g_j} = rel[j][n+i],
39
%t_i^{t_j} = 1.
40
%enddisplay
41
42
Then we compute a consistent pp-presentation of the corresponding Schur
43
extensions of with generators $g_1, ..., g_n, t_1, ..., t_d, c_1, ... c_m$ and
44
relations
45
46
%display{nontext}
47
$$
48
\eqalign{
49
&\, g_i^p=rel[i][i],\cr
50
&\, t_i^{expo} = rel[n+i][n+i],\cr
51
&\, c_i^{expo\_vec[i]} = rel[n+d+i,n+d+i],\cr
52
&\, g_i^{g_j} = rel[j][i], \cr
53
&\, t_i^{g_j} = rel[j][n+i],\cr
54
&\, t_i^{t_j} = rel[n+j][n+i],\cr
55
&\, c_i^{g_j} = 1, \cr
56
&\, c_i^{t_j} = 1, \cr
57
&\, c_i^{c_j} = 1.
58
}
59
$$
60
%display{text}
61
%g_i^p=rel[i][i],
62
%t_i^{expo}=rel[n+i][n+i],
63
%c_i^{expo\_vec[i]}=rel[n+d+i,n+d+i],
64
%g_i^{g_j} = rel[j][i],
65
%t_i^{g_j} = rel[j][n+i],
66
%t_i^{t_j} = rel[n+j][n+i],
67
%c_i^{g_j} = 1,
68
%c_i^{t_j} = 1,
69
%c_i^{c_j} = 1.
70
%enddisplay
71
72
where the $t_i$'s commute modulo $< c_1, ..., c_m>$ and the $c_i$'s are
73
central.
74
75
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76
\Section{Computing Schur extensions}
77
78
\>SchurExtParPres( <G> )
79
80
computes the Schur extensions corresponding to the <p>-power-poly-pcp-groups
81
<G> and returns them as <p>-power-poly-pcp-groups.
82
83
\>SchurExtParPres( <ParPres> ) F
84
85
computes a consistent pp-presentation of Schur extensions of the
86
groups defined by the record <ParPres> which describes
87
<p>-power-poly-pcp-groups. The output is a record
88
<rec>(<rel>, <expo>, <n>, <d>, <m>, <prime>, <cc>, <expo\_vec>, <name>),
89
which describes the Schur extensions as <p>-power-poly-pcp-groups; it is
90
encoded in a form that it can be used as input for
91
%display{tex}
92
{\tt PPPPcpGroups},
93
%enddisplay
94
"PPPPcpGroups".
95
96
\beginexample
97
gap> SchurExtParPres( ParPresGlobalVar_2_1[1] );
98
rec( prime := 2,
99
rel := [ [ [ [ 7, 1 ] ] ], [ [ [ 2, 1 ], [ 3, -1+2*2^x ], [ 6, 1-2*2^x ] ],
100
[ [ 3, 1 ], [ 5, 1 ] ] ],
101
[ [ [ 3, -1+2*2^x ], [ 4, 1 ], [ 6, 2-2*2^x ] ], [ [ 3, 1 ] ],
102
[ [ 4, 1 ], [ 6, 2*2^x ] ] ],
103
[ [ [ 4, 1 ] ], [ [ 4, 1 ] ], [ [ 4, 1 ] ], [ [ 4, 0 ] ] ],
104
[ [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 0 ] ] ]
105
,
106
[ [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ],
107
[ [ 6, 0 ] ] ],
108
[ [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ],
109
[ [ 7, 1 ] ], [ [ 7, 0 ] ] ] ], n := 2, d := 1, m := 4,
110
expo := 2*2^x, expo_vec := [ 2, 0, 0, 0 ], cc := fail, name := "SchurExt_D"
111
)
112
\endexample
113
114
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115
\Section{Computing other invariants from Schur extensions}
116
117
\>SchurMultiplicatorsStructurePPPPcps( <G> ) F
118
119
computes the abalian invariants of the Schur multiplicators <M(G)> of the
120
<p>-power-poly-pcp-groups <G>. The output is a list $[d_1, ..., d_k]$
121
consisting elements $d_i$, depending on the underlying parameter, such that
122
$M(G) \cong C_{d_1} \times \ldots \times C_{d_k}$.
123
124
\beginexample
125
gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );
126
< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >
127
SchurMultiplicatorsStructurePPPPcps( G );
128
[ 2 ]
129
\endexample
130
131
\>SchurMultiplicator( <G> )!{for p-power-poly-pcp-groups} F
132
133
computes the Schur multiplicators of the <p>-power-poly-pcp-groups <G> and
134
then returns the corresponding
135
%display{tex}
136
{\tt PPPPcpGroups},
137
%enddisplay
138
"PPPPcpGroups".
139
140
\beginexample
141
gap> G := PPPPcpGroup( ParPresGlobalVar_3_1[1] );
142
< P-Power-Poly pcp-group with 5 generators of relative orders [ 3,3,3,3*3^x,3*3^x ] >
143
gap> SchurMultiplicator( G );
144
< P-Power-Poly pcp-groups with 2 generators of relative orders [ 3,9*3^x ] >
145
\endexample
146
147
\>AbelianInvariants( <G> )!{for p-power-poly-pcp-groups} F
148
149
computes the abelian invariants of the <p>-power-poly-pcp-groups <G> and returns
150
them as a list of list describing the parametrised elements.
151
152
\beginexample
153
gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );
154
< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >
155
gap> AbelianInvariants( G );
156
[ 2, 2 ]
157
\endexample
158
159
\>ZeroCohomologyPPPPcps( <G>[, <p>] ) F
160
161
computes the zero-th-cohomology groups $H^0(G,R)$ of the
162
<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if
163
the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is
164
taken to be trivial. The function returns a list of integers $[a_1,\ldots,
165
a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots
166
\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$
167
is interpreted as $\Z$.
168
169
\beginexample
170
gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );
171
< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >
172
gap> ZeroCohomologyPPPPcp( G, 2 );
173
[ 2 ]
174
\endexample
175
176
\>FirstCohomologyPPPPcps( <G>[, <p>] ) F
177
178
computes the first-cohomology groups $H^1(G,R)$ of the
179
<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if
180
the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is
181
taken to be trivial. The function returns a list of integers $[a_1,\ldots,
182
a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots
183
\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$
184
is interpreted as $\Z$.
185
186
\beginexample
187
gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );
188
< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >
189
gap> FirstCohomologyPPPPcps( G );
190
[ ]
191
\endexample
192
193
\>SecondCohomologyPPPPcps( <G>[, <p>] ) F
194
195
computes the second-cohomology groups $H^2(G,R)$ of the
196
<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if
197
the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is
198
taken to be trivial. The function returns a list of integers $[a_1,\ldots,
199
a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots
200
\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$
201
is interpreted as $\Z$.
202
203
\beginexample
204
gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );
205
< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >
206
gap> SecondCohomologyPPPPcps( G, 2 );
207
[ 2, 2, 2 ]
208
\endexample
209
210
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
211
\Section{Info classes for the computation of the Schur extension}
212
213
The following info classes are available
214
215
\>`InfoConsistencyRelPPowerPoly' V
216
217
\beginitems
218
`level 1' & shows which consistency relations are computed and gives the
219
result;
220
\enditems
221
222
the default value is 0.
223
224
\>`InfoCollectingPPowerPoly' V
225
226
\beginitems
227
`level 1' & shows what is done during collecting;
228
\enditems
229
230
the default value is 0.
231
232