GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1%%2%W schurextension.tex GAP documentation D�rte Feichtenschlager3%%4%H $Id: schurextension.tex, v 0.5 2010/05/31 09:30:00 gap SymbCompCC $5%%67%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%8\Chapter{Schur extensions for p-power-poly-pcp-groups}910In this chapter we describe how the consistent pp-presentations11of infinite coclass sequences can be used to compute a pp-presentation for12the corresponding Schur extensions (see \cite{EF11}).1314For a group $G = F/R$ the Schur extension $H$ is defined as $H = F/[F,R]$15(see \cite{EN08}).1617So for a parameter <x> that can take values in the positive integers, let18$(G_x = F/R_x | x \in \N)$, for $\N$ the positive integers, describe an19infinite coclass sequence of finite $p$-groups $G_X$ of coclass $r$. Then for20each value for the parameter <x>, the group $G_x$ has a consistent polycyclic21presentation with generators $g_1, ..., g_n, t_1, ..., t_d$ and relations2223%display{nontext}24$$25\eqalign{26&\, g_i^p = rel[i][i],\cr27&\, t_i^{expo} = rel[n+i][n+i],\cr28&\, g_i^{g_j} = rel[j][i],\cr29&\, t_i^{g_j} = rel[j][n+i],\cr30&\, t_i^{t_j} = 1.31}32$$33%display{text}34%g_i^p = rel[i][i],35%t_i^{expo} = rel[n+i][n+i],36%g_i^{g_j} = rel[j][i],37%t_i^{g_j} = rel[j][n+i],38%t_i^{t_j} = 1.39%enddisplay4041Then we compute a consistent pp-presentation of the corresponding Schur42extensions of with generators $g_1, ..., g_n, t_1, ..., t_d, c_1, ... c_m$ and43relations4445%display{nontext}46$$47\eqalign{48&\, g_i^p=rel[i][i],\cr49&\, t_i^{expo} = rel[n+i][n+i],\cr50&\, c_i^{expo\_vec[i]} = rel[n+d+i,n+d+i],\cr51&\, g_i^{g_j} = rel[j][i], \cr52&\, t_i^{g_j} = rel[j][n+i],\cr53&\, t_i^{t_j} = rel[n+j][n+i],\cr54&\, c_i^{g_j} = 1, \cr55&\, c_i^{t_j} = 1, \cr56&\, c_i^{c_j} = 1.57}58$$59%display{text}60%g_i^p=rel[i][i],61%t_i^{expo}=rel[n+i][n+i],62%c_i^{expo\_vec[i]}=rel[n+d+i,n+d+i],63%g_i^{g_j} = rel[j][i],64%t_i^{g_j} = rel[j][n+i],65%t_i^{t_j} = rel[n+j][n+i],66%c_i^{g_j} = 1,67%c_i^{t_j} = 1,68%c_i^{c_j} = 1.69%enddisplay7071where the $t_i$'s commute modulo $< c_1, ..., c_m>$ and the $c_i$'s are72central.7374%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%75\Section{Computing Schur extensions}7677\>SchurExtParPres( <G> )7879computes the Schur extensions corresponding to the <p>-power-poly-pcp-groups80<G> and returns them as <p>-power-poly-pcp-groups.8182\>SchurExtParPres( <ParPres> ) F8384computes a consistent pp-presentation of Schur extensions of the85groups defined by the record <ParPres> which describes86<p>-power-poly-pcp-groups. The output is a record87<rec>(<rel>, <expo>, <n>, <d>, <m>, <prime>, <cc>, <expo\_vec>, <name>),88which describes the Schur extensions as <p>-power-poly-pcp-groups; it is89encoded in a form that it can be used as input for90%display{tex}91{\tt PPPPcpGroups},92%enddisplay93"PPPPcpGroups".9495\beginexample96gap> SchurExtParPres( ParPresGlobalVar_2_1[1] );97rec( prime := 2,98rel := [ [ [ [ 7, 1 ] ] ], [ [ [ 2, 1 ], [ 3, -1+2*2^x ], [ 6, 1-2*2^x ] ],99[ [ 3, 1 ], [ 5, 1 ] ] ],100[ [ [ 3, -1+2*2^x ], [ 4, 1 ], [ 6, 2-2*2^x ] ], [ [ 3, 1 ] ],101[ [ 4, 1 ], [ 6, 2*2^x ] ] ],102[ [ [ 4, 1 ] ], [ [ 4, 1 ] ], [ [ 4, 1 ] ], [ [ 4, 0 ] ] ],103[ [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 1 ] ], [ [ 5, 0 ] ] ]104,105[ [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ], [ [ 6, 1 ] ],106[ [ 6, 0 ] ] ],107[ [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ], [ [ 7, 1 ] ],108[ [ 7, 1 ] ], [ [ 7, 0 ] ] ] ], n := 2, d := 1, m := 4,109expo := 2*2^x, expo_vec := [ 2, 0, 0, 0 ], cc := fail, name := "SchurExt_D"110)111\endexample112113%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%114\Section{Computing other invariants from Schur extensions}115116\>SchurMultiplicatorsStructurePPPPcps( <G> ) F117118computes the abalian invariants of the Schur multiplicators <M(G)> of the119<p>-power-poly-pcp-groups <G>. The output is a list $[d_1, ..., d_k]$120consisting elements $d_i$, depending on the underlying parameter, such that121$M(G) \cong C_{d_1} \times \ldots \times C_{d_k}$.122123\beginexample124gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );125< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >126SchurMultiplicatorsStructurePPPPcps( G );127[ 2 ]128\endexample129130\>SchurMultiplicator( <G> )!{for p-power-poly-pcp-groups} F131132computes the Schur multiplicators of the <p>-power-poly-pcp-groups <G> and133then returns the corresponding134%display{tex}135{\tt PPPPcpGroups},136%enddisplay137"PPPPcpGroups".138139\beginexample140gap> G := PPPPcpGroup( ParPresGlobalVar_3_1[1] );141< P-Power-Poly pcp-group with 5 generators of relative orders [ 3,3,3,3*3^x,3*3^x ] >142gap> SchurMultiplicator( G );143< P-Power-Poly pcp-groups with 2 generators of relative orders [ 3,9*3^x ] >144\endexample145146\>AbelianInvariants( <G> )!{for p-power-poly-pcp-groups} F147148computes the abelian invariants of the <p>-power-poly-pcp-groups <G> and returns149them as a list of list describing the parametrised elements.150151\beginexample152gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );153< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >154gap> AbelianInvariants( G );155[ 2, 2 ]156\endexample157158\>ZeroCohomologyPPPPcps( <G>[, <p>] ) F159160computes the zero-th-cohomology groups $H^0(G,R)$ of the161<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if162the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is163taken to be trivial. The function returns a list of integers $[a_1,\ldots,164a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots165\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$166is interpreted as $\Z$.167168\beginexample169gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );170< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >171gap> ZeroCohomologyPPPPcp( G, 2 );172[ 2 ]173\endexample174175\>FirstCohomologyPPPPcps( <G>[, <p>] ) F176177computes the first-cohomology groups $H^1(G,R)$ of the178<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if179the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is180taken to be trivial. The function returns a list of integers $[a_1,\ldots,181a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots182\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$183is interpreted as $\Z$.184185\beginexample186gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );187< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >188gap> FirstCohomologyPPPPcps( G );189[ ]190\endexample191192\>SecondCohomologyPPPPcps( <G>[, <p>] ) F193194computes the second-cohomology groups $H^2(G,R)$ of the195<p>-power-poly-pcp-groups <G> with coefficients in $R$, where $R \cong GF(p)$ if196the prime $p$ is given or $R \cong \Z$ otherwise. The action of $G$ on $R$ is197taken to be trivial. The function returns a list of integers $[a_1,\ldots,198a_k]$ where the cohomology group is isomorphic to $C_{a_1} \times \ldots199\times C_{a_k}$ with $C_i$ a cyclic group of order $i$ (for $i > 0$) and $C_0$200is interpreted as $\Z$.201202\beginexample203gap> G := PPPPcpGroups( ParPresGlobalVar_2_1[1] );204< P-Power-Poly pcp-groups with 3 generators of relative orders [ 2,2,2*2^x ] >205gap> SecondCohomologyPPPPcps( G, 2 );206[ 2, 2, 2 ]207\endexample208209%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%210\Section{Info classes for the computation of the Schur extension}211212The following info classes are available213214\>`InfoConsistencyRelPPowerPoly' V215216\beginitems217`level 1' & shows which consistency relations are computed and gives the218result;219\enditems220221the default value is 0.222223\>`InfoCollectingPPowerPoly' V224225\beginitems226`level 1' & shows what is done during collecting;227\enditems228229the default value is 0.230231232