GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X3 [33X[0;0YThe User Interface of the [5XAtlasRep[105X[101X[1X Package[133X[101X23[33X[0;0YThe [13Xuser interface[113X is the part of the [5XGAP[105X interface that allows one to4display information about the current contents of the database and to access5individual data (perhaps from a remote server, see Section [14X4.3-1[114X). The6corresponding functions are described in this chapter. See Section [14X2.4[114X for7some small examples how to use the functions of the interface.[133X89[33X[0;0YExtensions of the [5XAtlasRep[105X package are regarded as another part of the [5XGAP[105X10interface, they are described in Chapter [14X5[114X. Finally, the low level part of11the interface are described in Chapter [14X7[114X.[133X1213[33X[0;0YFor some of the examples in this chapter, the [5XGAP[105X packages [5XCTblLib[105X and14[5XTomLib[105X are needed, so we load them.[133X1516[4X[32X Example [32X[104X17[4X[25Xgap>[125X [27XLoadPackage( "ctbllib" );[127X[104X18[4X[28Xtrue[128X[104X19[4X[25Xgap>[125X [27XLoadPackage( "tomlib" );[127X[104X20[4X[28Xtrue[128X[104X21[4X[32X[104X222324[1X3.1 [33X[0;0YAccessing vs. Constructing Representations[133X[101X2526[33X[0;0YNote that [13Xaccessing[113X the data means in particular that it is [13Xnot[113X the aim of27this package to [13Xconstruct[113X representations from known ones. For example, if28at least one permutation representation for a group [22XG[122X is stored but no29matrix representation in a positive characteristic [22Xp[122X, say, then30[2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) returns [9Xfail[109X when it is asked for a31description of an available set of matrix generators for [22XG[122X in characteristic32[22Xp[122X, although such a representation can be obtained by reduction modulo [22Xp[122X of33an integral matrix representation, which in turn can be constructed from any34permutation representation.[133X353637[1X3.2 [33X[0;0YGroup Names Used in the [5XAtlasRep[105X[101X[1X Package[133X[101X3839[33X[0;0YWhen you access data via the [5XAtlasRep[105X package, you specify the group in40question by an admissible [13Xname[113X. Thus it is essential to know these names,41which are called [13Xthe [5XGAP[105X names[113X of the group in the following.[133X4243[33X[0;0YFor a group [22XG[122X, say, whose character table is available in [5XGAP[105X's Character44Table Library, the admissible names of [22XG[122X are the admissible names of this45character table. If [22XG[122X is almost simple, one such name is the [2XIdentifier[102X46([14XReference: Identifier (for character tables)[114X) value of the character table,47see [2XAccessing a Character Table from the Library[102X ([14XCTblLib: Accessing a48Character Table from the Library[114X). This name is usually very similar to the49name used in the [5XATLAS[105X of Finite Groups [CCNPW85]. For example, [10X"M22"[110X is a50[5XGAP[105X name of the Mathieu group [22XM_22[122X, [10X"12_1.U4(3).2_1"[110X is a [5XGAP[105X name of51[22X12_1.U_4(3).2_1[122X, the two names [10X"S5"[110X and [10X"A5.2"[110X are [5XGAP[105X names of the52symmetric group [22XS_5[122X, and the two names [10X"F3+"[110X and [10X"Fi24'"[110X are [5XGAP[105X names of53the simple Fischer group [22XFi_24^'[122X.[133X5455[33X[0;0YWhen a [5XGAP[105X name is required as an input of a package function, this input is56case insensitive. For example, both [10X"A5"[110X and [10X"a5"[110X are valid arguments of57[2XDisplayAtlasInfo[102X ([14X3.5-1[114X).[133X5859[33X[0;0YInternally, for example as part of filenames (see Section [14X7.6[114X), the package60uses names that may differ from the [5XGAP[105X names; these names are called61[13X[5XATLAS[105X-file names[113X. For example, [10X"A5"[110X, [10X"TE62"[110X, and [10X"F24"[110X are [5XATLAS[105X-file names.62Of these, only [10X"A5"[110X is also a [5XGAP[105X name, but the other two are not;63corresponding [5XGAP[105X names are [10X"2E6(2)"[110X and [10X"Fi24'"[110X, respectively.[133X646566[1X3.3 [33X[0;0YStandard Generators Used in the [5XAtlasRep[105X[101X[1X Package[133X[101X6768[33X[0;0YFor the general definition of [13Xstandard generators[113X of a group, see [Wil96].[133X6970[33X[0;0YSeveral [13Xdifferent[113X standard generators may be defined for a group, the71definitions can be found at[133X7273[33X[0;0Y[7Xhttp://brauer.maths.qmul.ac.uk/Atlas[107X[133X7475[33X[0;0YWhen one specifies the standardization, the [22Xi[122X-th set of standard generators76is denoted by the number [22Xi[122X. Note that when more than one set of standard77generators is defined for a group, one must be careful to use [13Xcompatible78standardization[113X. For example, the straight line programs, straight line79decisions and black box programs in the database refer to a specific80standardization of their inputs. That is, a straight line program for81computing generators of a certain subgroup of a group [22XG[122X is defined only for82a specific set of standard generators of [22XG[122X, and applying the program to83matrix or permutation generators of [22XG[122X but w.r.t. a different standardization84may yield unpredictable results. Therefore the results returned by the85functions described in this chapter contain information about the86standardizations they refer to.[133X878889[1X3.4 [33X[0;0YClass Names Used in the [5XAtlasRep[105X[101X[1X Package[133X[101X9091[33X[0;0YFor each straight line program (see [2XAtlasProgram[102X ([14X3.5-3[114X)) that is used to92compute lists of class representatives, it is essential to describe the93classes in which these elements lie. Therefore, in these cases the records94returned by the function [2XAtlasProgram[102X ([14X3.5-3[114X) contain a component [10Xoutputs[110X95with value a list of [13Xclass names[113X.[133X9697[33X[0;0YCurrently we define these class names only for simple groups and certain98extensions of simple groups, see Section [14X3.4-1[114X. The function [2XAtlasClassNames[102X99([14X3.4-2[114X) can be used to compute the list of class names from the character100table in the [5XGAP[105X Library.[133X101102103[1X3.4-1 [33X[0;0YDefinition of [5XATLAS[105X[101X[1X Class Names[133X[101X104105[33X[0;0YFor the definition of class names of an almost simple group, we assume that106the ordinary character tables of all nontrivial normal subgroups are shown107in the [5XATLAS[105X of Finite Groups [CCNPW85].[133X108109[33X[0;0YEach class name is a string consisting of the element order of the class in110question followed by a combination of capital letters, digits, and the111characters [10X'[110X and [10X-[110X (starting with a capital letter). For example, [10X1A[110X, [10X12A1[110X,112and [10X3B'[110X denote the class that contains the identity element, a class of113element order [22X12[122X, and a class of element order [22X3[122X, respectively.[133X114115[31X1[131X [33X[0;6YFor the table of a [13Xsimple[113X group, the class names are the same as116returned by the two argument version of the [5XGAP[105X function [2XClassNames[102X117([14XReference: ClassNames[114X), cf. [CCNPW85, Chapter 7, Section 5]: The118classes are arranged w.r.t. increasing element order and for each119element order w.r.t. decreasing centralizer order, the conjugacy120classes that contain elements of order [22Xn[122X are named [22Xn[122X[10XA[110X, [22Xn[122X[10XB[110X, [22Xn[122X[10XC[110X, [22X...[122X;121the alphabet used here is potentially infinite, and reads [10XA[110X, [10XB[110X, [10XC[110X,122[22X...[122X, [10XZ[110X, [10XA1[110X, [10XB1[110X, [22X...[122X, [10XA2[110X, [10XB2[110X, [22X...[122X.[133X123124[33X[0;6YFor example, the classes of the alternating group [22XA_5[122X have the names125[10X1A[110X, [10X2A[110X, [10X3A[110X, [10X5A[110X, and [10X5B[110X.[133X126127[31X2[131X [33X[0;6YNext we consider the case of an [13Xupward extension[113X [22XG.A[122X of a simple group128[22XG[122X by a [13Xcyclic[113X group of order [22XA[122X. The [5XATLAS[105X defines class names for each129element [22Xg[122X of [22XG.A[122X only w.r.t. the group [22XG.a[122X, say, that is generated by130[22XG[122X and [22Xg[122X; namely, there is a power of [22Xg[122X (with the exponent coprime to131the order of [22Xg[122X) for which the class has a name of the same form as the132class names for simple groups, and the name of the class of [22Xg[122X133w.r.t. [22XG.a[122X is then obtained from this name by appending a suitable134number of dashes [10X'[110X. So dashed class names refer exactly to those135classes that are not printed in the [5XATLAS[105X.[133X136137[33X[0;6YFor example, those classes of the symmetric group [22XS_5[122X that do not lie138in [22XA_5[122X have the names [10X2B[110X, [10X4A[110X, and [10X6A[110X. The outer classes of the group139[22XL_2(8).3[122X have the names [10X3B[110X, [10X6A[110X, [10X9D[110X, and [10X3B'[110X, [10X6A'[110X, [10X9D'[110X. The outer140elements of order [22X5[122X in the group [22XSz(32).5[122X lie in the classes with141names [10X5B[110X, [10X5B'[110X, [10X5B''[110X, and [10X5B'''[110X.[133X142143[33X[0;6YIn the group [22XG.A[122X, the class of [22Xg[122X may fuse with other classes. The name144of the class of [22Xg[122X in [22XG.A[122X is obtained from the names of the involved145classes of [22XG.a[122X by concatenating their names after removing the element146order part from all of them except the first one.[133X147148[33X[0;6YFor example, the elements of order [22X9[122X in the group [22XL_2(27).6[122X are149contained in the subgroup [22XL_2(27).3[122X but not in [22XL_2(27)[122X. In [22XL_2(27).3[122X,150they lie in the classes [10X9A[110X, [10X9A'[110X, [10X9B[110X, and [10X9B'[110X; in [22XL_2(27).6[122X, these151classes fuse to [10X9AB[110X and [10X9A'B'[110X.[133X152153[31X3[131X [33X[0;6YNow we define class names for [13Xgeneral upward extensions[113X [22XG.A[122X of a154simple group [22XG[122X. Each element [22Xg[122X of such a group lies in an upward155extension [22XG.a[122X by a cyclic group, and the class names w.r.t. [22XG.a[122X are156already defined. The name of the class of [22Xg[122X in [22XG.A[122X is obtained by157concatenating the names of the classes in the orbit of [22XG.A[122X on the158classes of cyclic upward extensions of [22XG[122X, after ordering the names159lexicographically and removing the element order part from all of them160except the first one. An [13Xexception[113X is the situation where dashed and161non-dashed class names appear in an orbit; in this case, the dashed162names are omitted.[133X163164[33X[0;6YFor example, the classes [10X21A[110X and [10X21B[110X of the group [22XU_3(5).3[122X fuse in165[22XU_3(5).S_3[122X to the class [10X21AB[110X, and the class [10X2B[110X of [22XU_3(5).2[122X fuses with166the involution classes [10X2B'[110X, [10X2B''[110X in the groups [22XU_3(5).2^'[122X and167[22XU_3(5).2^{''}[122X to the class [10X2B[110X of [22XU_3(5).S_3[122X.[133X168169[33X[0;6YIt may happen that some names in the [10Xoutputs[110X component of a record170returned by [2XAtlasProgram[102X ([14X3.5-3[114X) do not uniquely determine the classes171of the corresponding elements. For example, the (algebraically172conjugate) classes [10X39A[110X and [10X39B[110X of the group [22XCo_1[122X have not been173distinguished yet. In such cases, the names used contain a minus sign174[10X-[110X, and mean [21Xone of the classes in the range described by the name175before and the name after the minus sign[121X; the element order part of176the name does not appear after the minus sign. So the name [10X39A-B[110X for177the group [22XCo_1[122X means [10X39A[110X or [10X39B[110X, and the name [10X20A-B'''[110X for the group178[22XSz(32).5[122X means one of the classes of element order [22X20[122X in this group179(these classes lie outside the simple group [22XSz[122X).[133X180181[31X4[131X [33X[0;6YFor a [13Xdownward extension[113X [22Xm.G.A[122X of an almost simple group [22XG.A[122X by a182cyclic group of order [22Xm[122X, let [22Xπ[122X denote the natural epimorphism from183[22Xm.G.A[122X onto [22XG.A[122X. Each class name of [22Xm.G.A[122X has the form [10XnX_0[110X, [10XnX_1[110X etc.,184where [10XnX[110X is the class name of the image under [22Xπ[122X, and the indices [10X0[110X, [10X1[110X185etc. are chosen according to the position of the class in the lifting186order rows for [22XG[122X, see [CCNPW85, Chapter 7, Section 7, and the example187in Section 8]).[133X188189[33X[0;6YFor example, if [22Xm = 6[122X then [10X1A_1[110X and [10X1A_5[110X denote the classes containing190the generators of the kernel of [22Xπ[122X, that is, central elements of order191[22X6[122X.[133X192193[1X3.4-2 AtlasClassNames[101X194195[29X[2XAtlasClassNames[102X( [3Xtbl[103X ) [32X function196[6XReturns:[106X [33X[0;10Ya list of class names.[133X197198[33X[0;0YLet [3Xtbl[103X be the ordinary or modular character table of a group [22XG[122X, say, that199is almost simple or a downward extension of an almost simple group and such200that [3Xtbl[103X is an [5XATLAS[105X table from the [5XGAP[105X Character Table Library, according201to its [2XInfoText[102X ([14XReference: InfoText[114X) value. Then [2XAtlasClassNames[102X returns202the list of class names for [22XG[122X, as defined in Section [14X3.4-1[114X. The ordering of203class names is the same as the ordering of the columns of [3Xtbl[103X.[133X204205[33X[0;0Y(The function may work also for character tables that are not [5XATLAS[105X tables,206but then clearly the class names returned are somewhat arbitrary.)[133X207208[4X[32X Example [32X[104X209[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "L3(4).3" ) );[127X[104X210[4X[28X[ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B'", [128X[104X211[4X[28X "3C", "3C'", "6B", "6B'", "15A", "15A'", "15B", "15B'", "21A", [128X[104X212[4X[28X "21A'", "21B", "21B'" ][128X[104X213[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "U3(5).2" ) );[127X[104X214[4X[28X[ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", [128X[104X215[4X[28X "10A", "2B", "4B", "6D", "8C", "10B", "12B", "20A", "20B" ][128X[104X216[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "L2(27).6" ) );[127X[104X217[4X[28X[ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", [128X[104X218[4X[28X "26ABC", "26DEF", "28ABC", "28DEF", "3C", "3C'", "6A", "6A'", [128X[104X219[4X[28X "9AB", "9A'B'", "6B", "6B'", "12A", "12A'" ][128X[104X220[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "L3(4).3.2_2" ) );[127X[104X221[4X[28X[ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", [128X[104X222[4X[28X "15A", "15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ][128X[104X223[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "3.A6" ) );[127X[104X224[4X[28X[ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", [128X[104X225[4X[28X "4A_0", "4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", [128X[104X226[4X[28X "5B_2" ][128X[104X227[4X[25Xgap>[125X [27XAtlasClassNames( CharacterTable( "2.A5.2" ) );[127X[104X228[4X[28X[ "1A_0", "1A_1", "2A_0", "3A_0", "3A_1", "5AB_0", "5AB_1", "2B_0", [128X[104X229[4X[28X "4A_0", "4A_1", "6A_0", "6A_1" ][128X[104X230[4X[32X[104X231232[1X3.4-3 AtlasCharacterNames[101X233234[29X[2XAtlasCharacterNames[102X( [3Xtbl[103X ) [32X function235[6XReturns:[106X [33X[0;10Ya list of character names.[133X236237[33X[0;0YLet [3Xtbl[103X be the ordinary or modular character table of a simple group.238[2XAtlasCharacterNames[102X returns a list of strings, the [22Xi[122X-th entry being the name239of the [22Xi[122X-th irreducible character of [3Xtbl[103X; this name consists of the degree240of this character followed by distinguishing lowercase letters.[133X241242[4X[32X Example [32X[104X243[4X[25Xgap>[125X [27XAtlasCharacterNames( CharacterTable( "A5" ) ); [127X[104X244[4X[28X[ "1a", "3a", "3b", "4a", "5a" ][128X[104X245[4X[32X[104X246247248[1X3.5 [33X[0;0YAccessing Data of the [5XAtlasRep[105X[101X[1X Package[133X[101X249250[33X[0;0YNote that the output of the examples in this section refers to a perhaps251outdated table of contents; the current version of the database may contain252more information than is shown here.[133X253254[1X3.5-1 DisplayAtlasInfo[101X255256[29X[2XDisplayAtlasInfo[102X( [[3Xlistofnames[103X, ][[3Xstd[103X, ][[3X"contents"[103X, [3Xsources[103X, ][[3X...[103X] ) [32X function257[29X[2XDisplayAtlasInfo[102X( [3Xgapname[103X[, [3Xstd[103X][, [3X...[103X] ) [32X function258259[33X[0;0YThis function lists the information available via the [5XAtlasRep[105X package, for260the given input. Depending on whether remote access to data is enabled (see261Section [14X4.3-1[114X), all the data provided by the [5XATLAS[105X of Group Representations262or only those in the local installation are considered.[133X263264[33X[0;0YAn interactive alternative to [2XDisplayAtlasInfo[102X is the function265[2XBrowseAtlasInfo[102X ([14XBrowse: BrowseAtlasInfo[114X), see [BL14].[133X266267[33X[0;0YCalled without arguments, [2XDisplayAtlasInfo[102X prints an overview what268information the [5XATLAS[105X of Group Representations provides. One line is printed269for each group [22XG[122X, with the following columns.[133X270271[8X[10Xgroup[110X[108X272[33X[0;6Ythe [5XGAP[105X name of [22XG[122X (see Section [14X3.2[114X),[133X273274[8X[10X#[110X[108X275[33X[0;6Ythe number of faithful representations stored for [22XG[122X that satisfy the276additional conditions given (see below),[133X277278[8X[10Xmaxes[110X[108X279[33X[0;6Ythe number of available straight line programs for computing280generators of maximal subgroups of [22XG[122X,[133X281282[8X[10Xcl[110X[108X283[33X[0;6Ya [10X+[110X sign if at least one program for computing representatives of284conjugacy classes of elements of [22XG[122X is stored,[133X285286[8X[10Xcyc[110X[108X287[33X[0;6Ya [10X+[110X sign if at least one program for computing representatives of288classes of maximally cyclic subgroups of [22XG[122X is stored,[133X289290[8X[10Xout[110X[108X291[33X[0;6Ydescriptions of outer automorphisms of [22XG[122X for which at least one292program is stored,[133X293294[8X[10Xfnd[110X[108X295[33X[0;6Ya [10X+[110X sign if at least one program is available for finding standard296generators,[133X297298[8X[10Xchk[110X[108X299[33X[0;6Ya [10X+[110X sign if at least one program is available for checking whether a300set of generators is a set of standard generators, and[133X301302[8X[10Xprs[110X[108X303[33X[0;6Ya [10X+[110X sign if at least one program is available that encodes a304presentation.[133X305306[33X[0;0Y(The list can be printed to the screen or can be fed into a pager, see307Section [14X4.3-5[114X.)[133X308309[33X[0;0YCalled with a list [3Xlistofnames[103X of strings that are [5XGAP[105X names for a group310from the [5XATLAS[105X of Group Representations, [2XDisplayAtlasInfo[102X prints the311overview described above but restricted to the groups in this list.[133X312313[33X[0;0YIn addition to or instead of [3Xlistofnames[103X, the string [10X"contents"[110X and a314description [3Xsources[103X of the data may be given about which the overview is315formed. See below for admissible values of [3Xsources[103X.[133X316317[33X[0;0YCalled with a string [3Xgapname[103X that is a [5XGAP[105X name for a group from the [5XATLAS[105X318of Group Representations, [2XDisplayAtlasInfo[102X prints an overview of the319information that is available for this group. One line is printed for each320faithful representation, showing the number of this representation (which321can be used in calls of [2XAtlasGenerators[102X ([14X3.5-2[114X)), and a string of one of the322following forms; in both cases, [3Xid[103X is a (possibly empty) string.[133X323324[8X[10XG <= Sym([3Xn[103X[10X[3Xid[103X[10X)[110X[108X325[33X[0;6Ydenotes a permutation representation of degree [3Xn[103X, for example [10XG <=326Sym(40a)[110X and [10XG <= Sym(40b)[110X denote two (nonequivalent) representations327of degree [22X40[122X.[133X328329[8X[10XG <= GL([3Xn[103X[10X[3Xid[103X[10X,[3Xdescr[103X[10X)[110X[108X330[33X[0;6Ydenotes a matrix representation of dimension [3Xn[103X over a coefficient ring331described by [3Xdescr[103X, which can be a prime power, [10Xℤ[110X (denoting the ring332of integers), a description of an algebraic extension field, [10Xℂ[110X333(denoting an unspecified algebraic extension field), or [10Xℤ/[3Xm[103X[10Xℤ[110X for an334integer [3Xm[103X (denoting the ring of residues mod [3Xm[103X); for example, [10XG <=335GL(2a,4)[110X and [10XG <= GL(2b,4)[110X denote two (nonequivalent) representations336of dimension [22X2[122X over the field with four elements.[133X337338[33X[0;0YAfter the representations, the programs available for [3Xgapname[103X are listed.[133X339340[33X[0;0YThe following optional arguments can be used to restrict the overviews.[133X341342[8X[3Xstd[103X[108X343[33X[0;6Ymust be a positive integer or a list of positive integers; if it is344given then only those representations are considered that refer to the345[3Xstd[103X-th set of standard generators or the [22Xi[122X-th set of standard346generators, for [22Xi[122X in [3Xstd[103X (see Section [14X3.3[114X),[133X347348[8X[10X"contents"[110X and [3Xsources[103X[108X349[33X[0;6Yfor a string or a list of strings [3Xsources[103X, restrict the data about350which the overview is formed; if [3Xsources[103X is the string [10X"public"[110X then351only non-private data (see Chapter [14X5[114X) are considered, if [3Xsources[103X is a352string that denotes a private extension in the sense of a [3Xdirid[103X353argument of [2XAtlasOfGroupRepresentationsNotifyPrivateDirectory[102X ([14X5.1-1[114X)354then only the data that belong to this private extension are355considered; also a list of such strings may be given, then the union356of these data is considered,[133X357358[8X[10XIdentifier[110X and [3Xid[103X[108X359[33X[0;6Yrestrict to representations with [10Xidentifier[110X component in the list [3Xid[103X360(note that this component is itself a list, entering this list is not361admissible), or satisfying the function [3Xid[103X,[133X362363[8X[10XIsPermGroup[110X and [9Xtrue[109X[108X364[33X[0;6Yrestrict to permutation representations,[133X365366[8X[10XNrMovedPoints[110X and [3Xn[103X[108X367[33X[0;6Yfor a positive integer, a list of positive integers, or a property [3Xn[103X,368restrict to permutation representations of degree equal to [3Xn[103X, or in369the list [3Xn[103X, or satisfying the function [3Xn[103X,[133X370371[8X[10XNrMovedPoints[110X and the string [10X"minimal"[110X[108X372[33X[0;6Yrestrict to faithful permutation representations of minimal degree (if373this information is available),[133X374375[8X[10XIsTransitive[110X and [9Xtrue[109X or [9Xfalse[109X[108X376[33X[0;6Yrestrict to transitive or intransitive permutation representations (if377this information is available),[133X378379[8X[10XIsPrimitive[110X and [9Xtrue[109X or [9Xfalse[109X[108X380[33X[0;6Yrestrict to primitive or imprimitive permutation representations (if381this information is available),[133X382383[8X[10XTransitivity[110X and [3Xn[103X[108X384[33X[0;6Yfor a nonnegative integer, a list of nonnegative integers, or a385property [3Xn[103X, restrict to permutation representations of transitivity386equal to [3Xn[103X, or in the list [3Xn[103X, or satisfying the function [3Xn[103X (if this387information is available),[133X388389[8X[10XRankAction[110X and [3Xn[103X[108X390[33X[0;6Yfor a nonnegative integer, a list of nonnegative integers, or a391property [3Xn[103X, restrict to permutation representations of rank equal to392[3Xn[103X, or in the list [3Xn[103X, or satisfying the function [3Xn[103X (if this information393is available),[133X394395[8X[10XIsMatrixGroup[110X and [9Xtrue[109X[108X396[33X[0;6Yrestrict to matrix representations,[133X397398[8X[10XCharacteristic[110X and [3Xp[103X[108X399[33X[0;6Yfor a prime integer, a list of prime integers, or a property [3Xp[103X,400restrict to matrix representations over fields of characteristic equal401to [3Xp[103X, or in the list [3Xp[103X, or satisfying the function [3Xp[103X (representations402over residue class rings that are not fields can be addressed by403entering [9Xfail[109X as the value of [3Xp[103X),[133X404405[8X[10XDimension[110X and [3Xn[103X[108X406[33X[0;6Yfor a positive integer, a list of positive integers, or a property [3Xn[103X,407restrict to matrix representations of dimension equal to [3Xn[103X, or in the408list [3Xn[103X, or satisfying the function [3Xn[103X,[133X409410[8X[10XCharacteristic[110X, [3Xp[103X, [10XDimension[110X,411and the string [10X"minimal"[110X[108X412[33X[0;6Yfor a prime integer [3Xp[103X, restrict to faithful matrix representations413over fields of characteristic [3Xp[103X that have minimal dimension (if this414information is available),[133X415416[8X[10XRing[110X and [3XR[103X[108X417[33X[0;6Yfor a ring or a property [3XR[103X, restrict to matrix representations over418this ring or satisfying this function (note that the representation419might be defined over a proper subring of [3XR[103X),[133X420421[8X[10XRing[110X, [3XR[103X, [10XDimension[110X,422and the string [10X"minimal"[110X[108X423[33X[0;6Yfor a ring [3XR[103X, restrict to faithful matrix representations over this424ring that have minimal dimension (if this information is available),[133X425426[8X[10XCharacter[110X and [3Xchi[103X[108X427[33X[0;6Yfor a class function or a list of class functions [3Xchi[103X, restrict to428matrix representations with these characters (note that the underlying429characteristic of the class function, see Section [14X'Reference:430UnderlyingCharacteristic'[114X, determines the characteristic of the431matrices), and[133X432433[8X[10XIsStraightLineProgram[110X and [9Xtrue[109X[108X434[33X[0;6Yrestrict to straight line programs, straight line decisions (see435Section [14X6.1[114X), and black box programs (see Section [14X6.2[114X).[133X436437[33X[0;0YNote that the above conditions refer only to the information that is438available without accessing the representations. For example, if it is not439stored in the table of contents whether a permutation representation is440primitive then this representation does not match an [10XIsPrimitive[110X condition441in [2XDisplayAtlasInfo[102X.[133X442443[33X[0;0YIf [21Xminimality[121X information is requested and no available representation444matches this condition then either no minimal representation is available or445the information about the minimality is missing. See446[2XMinimalRepresentationInfo[102X ([14X6.3-1[114X) for checking whether the minimality447information is available for the group in question. Note that in the cases448where the string [10X"minimal"[110X occurs as an argument, [2XMinimalRepresentationInfo[102X449([14X6.3-1[114X) is called with third argument [10X"lookup"[110X; this is because the stored450information was precomputed just for the groups in the [5XATLAS[105X of Group451Representations, so trying to compute non-stored minimality information452(using other available databases) will hardly be successful.[133X453454[33X[0;0YThe representations are ordered as follows. Permutation representations come455first (ordered according to their degrees), followed by matrix456representations over finite fields (ordered first according to the field457size and second according to the dimension), matrix representations over the458integers, and then matrix representations over algebraic extension fields459(both kinds ordered according to the dimension), the last representations460are matrix representations over residue class rings (ordered first according461to the modulus and second according to the dimension).[133X462463[33X[0;0YThe maximal subgroups are ordered according to decreasing group order. For464an extension [22XG.p[122X of a simple group [22XG[122X by an outer automorphism of prime order465[22Xp[122X, this means that [22XG[122X is the first maximal subgroup and then come the466extensions of the maximal subgroups of [22XG[122X and the novelties; so the [22Xn[122X-th467maximal subgroup of [22XG[122X and the [22Xn[122X-th maximal subgroup of [22XG.p[122X are in general468not related. (This coincides with the numbering used for the [2XMaxes[102X ([14XCTblLib:469Maxes[114X) attribute for character tables.)[133X470471[4X[32X Example [32X[104X472[4X[25Xgap>[125X [27XDisplayAtlasInfo( [ "M11", "A5" ] );[127X[104X473[4X[28Xgroup | # | maxes | cl | cyc | out | fnd | chk | prs[128X[104X474[4X[28X------+----+-------+----+-----+-----+-----+-----+----[128X[104X475[4X[28XM11 | 42 | 5 | + | + | | + | + | + [128X[104X476[4X[28XA5 | 18 | 3 | | | | | + | + [128X[104X477[4X[32X[104X478479[33X[0;0YThe above output means that the [5XATLAS[105X of Group Representations contains [22X42[122X480representations of the Mathieu group [22XM_11[122X, straight line programs for481computing generators of representatives of all five classes of maximal482subgroups, for computing representatives of the conjugacy classes of483elements and of generators of maximally cyclic subgroups, contains no484straight line program for applying outer automorphisms (well, in fact [22XM_11[122X485admits no nontrivial outer automorphism), and contains straight line486decisions that check a set of generators or a set of group elements for487being a set of standard generators. Analogously, [22X18[122X representations of the488alternating group [22XA_5[122X are available, straight line programs for computing489generators of representatives of all three classes of maximal subgroups, and490no straight line programs for computing representatives of the conjugacy491classes of elements, of generators of maximally cyclic subgroups, and no for492computing images under outer automorphisms; straight line decisions for493checking the standardization of generators or group elements are available.[133X494495[4X[32X Example [32X[104X496[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", IsPermGroup, true );[127X[104X497[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X498[4X[28X---------------------------[128X[104X499[4X[28X1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)[128X[104X500[4X[28X2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)[128X[104X501[4X[28X3: G <= Sym(10) rank 3, on cosets of S3 (3rd max.)[128X[104X502[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] );[127X[104X503[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X504[4X[28X---------------------------[128X[104X505[4X[28X1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)[128X[104X506[4X[28X2: G <= Sym(6) 2-trans., on cosets of D10 (2nd max.)[128X[104X507[4X[32X[104X508509[33X[0;0YThe first three representations stored for [22XA_5[122X are (in fact primitive)510permutation representations.[133X511512[4X[32X Example [32X[104X513[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] );[127X[104X514[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X515[4X[28X---------------------------[128X[104X516[4X[28X 8: G <= GL(2a,4) [128X[104X517[4X[28X 9: G <= GL(2b,4) [128X[104X518[4X[28X10: G <= GL(3,5) [128X[104X519[4X[28X12: G <= GL(3a,9) [128X[104X520[4X[28X13: G <= GL(3b,9) [128X[104X521[4X[28X17: G <= GL(3a,Field([Sqrt(5)])) [128X[104X522[4X[28X18: G <= GL(3b,Field([Sqrt(5)])) [128X[104X523[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Characteristic, 0 );[127X[104X524[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X525[4X[28X---------------------------[128X[104X526[4X[28X14: G <= GL(4,Z) [128X[104X527[4X[28X15: G <= GL(5,Z) [128X[104X528[4X[28X16: G <= GL(6,Z) [128X[104X529[4X[28X17: G <= GL(3a,Field([Sqrt(5)])) [128X[104X530[4X[28X18: G <= GL(3b,Field([Sqrt(5)])) [128X[104X531[4X[32X[104X532533[33X[0;0YThe representations with number between [22X4[122X and [22X13[122X are (in fact irreducible)534matrix representations over various finite fields, those with numbers [22X14[122X to535[22X16[122X are integral matrix representations, and the last two are matrix536representations over the field generated by [22Xsqrt{5}[122X over the rational number537field.[133X538539[4X[32X Example [32X[104X540[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Identifier, "a" );[127X[104X541[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X542[4X[28X---------------------------[128X[104X543[4X[28X 4: G <= GL(4a,2) [128X[104X544[4X[28X 8: G <= GL(2a,4) [128X[104X545[4X[28X12: G <= GL(3a,9) [128X[104X546[4X[28X17: G <= GL(3a,Field([Sqrt(5)])) [128X[104X547[4X[32X[104X548549[33X[0;0YEach of the representations with the numbers [22X4, 8, 12[122X, and [22X17[122X is labeled550with the distinguishing letter [10Xa[110X.[133X551552[4X[32X Example [32X[104X553[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt );[127X[104X554[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X555[4X[28X---------------------------[128X[104X556[4X[28X1: G <= Sym(5) 3-trans., on cosets of A4 (1st max.)[128X[104X557[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Characteristic, IsOddInt );[127X[104X558[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X559[4X[28X---------------------------[128X[104X560[4X[28X 6: G <= GL(4,3) [128X[104X561[4X[28X 7: G <= GL(6,3) [128X[104X562[4X[28X10: G <= GL(3,5) [128X[104X563[4X[28X11: G <= GL(5,5) [128X[104X564[4X[28X12: G <= GL(3a,9) [128X[104X565[4X[28X13: G <= GL(3b,9) [128X[104X566[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Dimension, IsPrimeInt );[127X[104X567[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X568[4X[28X---------------------------[128X[104X569[4X[28X 8: G <= GL(2a,4) [128X[104X570[4X[28X 9: G <= GL(2b,4) [128X[104X571[4X[28X10: G <= GL(3,5) [128X[104X572[4X[28X11: G <= GL(5,5) [128X[104X573[4X[28X12: G <= GL(3a,9) [128X[104X574[4X[28X13: G <= GL(3b,9) [128X[104X575[4X[28X15: G <= GL(5,Z) [128X[104X576[4X[28X17: G <= GL(3a,Field([Sqrt(5)])) [128X[104X577[4X[28X18: G <= GL(3b,Field([Sqrt(5)])) [128X[104X578[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField );[127X[104X579[4X[28XRepresentations for G = A5: (all refer to std. generators 1)[128X[104X580[4X[28X---------------------------[128X[104X581[4X[28X 4: G <= GL(4a,2) [128X[104X582[4X[28X 5: G <= GL(4b,2) [128X[104X583[4X[28X 6: G <= GL(4,3) [128X[104X584[4X[28X 7: G <= GL(6,3) [128X[104X585[4X[28X10: G <= GL(3,5) [128X[104X586[4X[28X11: G <= GL(5,5) [128X[104X587[4X[32X[104X588589[33X[0;0YThe above examples show how the output can be restricted using a property (a590unary function that returns either [9Xtrue[109X or [9Xfalse[109X) that follows [2XNrMovedPoints[102X591([14XReference: NrMovedPoints (for a permutation)[114X), [2XCharacteristic[102X ([14XReference:592Characteristic[114X), [2XDimension[102X ([14XReference: Dimension[114X), or [2XRing[102X ([14XReference: Ring[114X)593in the argument list of [2XDisplayAtlasInfo[102X.[133X594595[4X[32X Example [32X[104X596[4X[25Xgap>[125X [27XDisplayAtlasInfo( "A5", IsStraightLineProgram, true );[127X[104X597[4X[28XPrograms for G = A5: (all refer to std. generators 1)[128X[104X598[4X[28X--------------------[128X[104X599[4X[28Xpresentation[128X[104X600[4X[28Xstd. gen. checker[128X[104X601[4X[28Xmaxes (all 3):[128X[104X602[4X[28X 1: A4[128X[104X603[4X[28X 2: D10[128X[104X604[4X[28X 3: S3[128X[104X605[4X[32X[104X606607[33X[0;0YStraight line programs are available for computing generators of608representatives of the three classes of maximal subgroups of [22XA_5[122X, and a609straight line decision for checking whether given generators are in fact610standard generators is available as well as a presentation in terms of611standard generators, see [2XAtlasProgram[102X ([14X3.5-3[114X).[133X612613[1X3.5-2 AtlasGenerators[101X614615[29X[2XAtlasGenerators[102X( [3Xgapname[103X, [3Xrepnr[103X[, [3Xmaxnr[103X] ) [32X function616[29X[2XAtlasGenerators[102X( [3Xidentifier[103X ) [32X function617[6XReturns:[106X [33X[0;10Ya record containing generators for a representation, or [9Xfail[109X.[133X618619[33X[0;0YIn the first form, [3Xgapname[103X must be a string denoting a [5XGAP[105X name (see620Section [14X3.2[114X) of a group, and [3Xrepnr[103X a positive integer. If the [5XATLAS[105X of Group621Representations contains at least [3Xrepnr[103X representations for the group with622[5XGAP[105X name [3Xgapname[103X then [2XAtlasGenerators[102X, when called with [3Xgapname[103X and [3Xrepnr[103X,623returns an immutable record describing the [3Xrepnr[103X-th representation;624otherwise [9Xfail[109X is returned. If a third argument [3Xmaxnr[103X, a positive integer,625is given then an immutable record describing the restriction of the [3Xrepnr[103X-th626representation to the [3Xmaxnr[103X-th maximal subgroup is returned.[133X627628[33X[0;0YThe result record has at least the following components.[133X629630[8X[10Xgenerators[110X[108X631[33X[0;6Ya list of generators for the group,[133X632633[8X[10Xgroupname[110X[108X634[33X[0;6Ythe [5XGAP[105X name of the group (see Section [14X3.2[114X),[133X635636[8X[10Xidentifier[110X[108X637[33X[0;6Ya [5XGAP[105X object (a list of filenames plus additional information) that638uniquely determines the representation; the value can be used as639[3Xidentifier[103X argument of [2XAtlasGenerators[102X.[133X640641[8X[10Xrepnr[110X[108X642[33X[0;6Ythe number of the representation in the current session, equal to the643argument [3Xrepnr[103X if this is given.[133X644645[8X[10Xstandardization[110X[108X646[33X[0;6Ythe positive integer denoting the underlying standard generators,[133X647648[33X[0;0YAdditionally, the group order may be stored in the component [10Xsize[110X, and649describing components may be available that depend on the data type of the650representation: For permutation representations, these are [10Xp[110X for the number651of moved points, [10Xid[110X for the distinguishing string as described for652[2XDisplayAtlasInfo[102X ([14X3.5-1[114X), and information about primitivity, point653stabilizers etc. if available; for matrix representations, these are [10Xdim[110X for654the dimension of the matrices, [10Xring[110X (if known) for the ring generated by the655matrix entries, [10Xid[110X for the distinguishing string, and information about the656character if available.[133X657658[33X[0;0YIt should be noted that the number [3Xrepnr[103X refers to the number shown by659[2XDisplayAtlasInfo[102X ([14X3.5-1[114X) [13Xin the current session[113X; it may be that after the660addition of new representations, [3Xrepnr[103X refers to another representation.[133X661662[33X[0;0YThe alternative form of [2XAtlasGenerators[102X, with only argument [3Xidentifier[103X, can663be used to fetch the result record with [10Xidentifier[110X value equal to664[3Xidentifier[103X. The purpose of this variant is to access the [13Xsame[113X representation665also in [13Xdifferent[113X [5XGAP[105X sessions.[133X666667[4X[32X Example [32X[104X668[4X[25Xgap>[125X [27Xgens1:= AtlasGenerators( "A5", 1 );[127X[104X669[4X[28Xrec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", [128X[104X670[4X[28X id := "", [128X[104X671[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X672[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X673[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X674[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X675[4X[25Xgap>[125X [27Xgens8:= AtlasGenerators( "A5", 8 );[127X[104X676[4X[28Xrec( dim := 2, [128X[104X677[4X[28X generators := [ [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ], [128X[104X678[4X[28X [ [ 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0 ] ] ], groupname := "A5",[128X[104X679[4X[28X id := "a", [128X[104X680[4X[28X identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, [128X[104X681[4X[28X 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), [128X[104X682[4X[28X size := 60, standardization := 1, type := "matff" )[128X[104X683[4X[25Xgap>[125X [27Xgens17:= AtlasGenerators( "A5", 17 );[127X[104X684[4X[28Xrec( dim := 3, [128X[104X685[4X[28X generators := [128X[104X686[4X[28X [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] [128X[104X687[4X[28X ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], [128X[104X688[4X[28X groupname := "A5", id := "a", [128X[104X689[4X[28X identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], [128X[104X690[4X[28X repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), [128X[104X691[4X[28X size := 60, standardization := 1, type := "matalg" )[128X[104X692[4X[32X[104X693694[33X[0;0YEach of the above pairs of elements generates a group isomorphic to [22XA_5[122X.[133X695696[4X[32X Example [32X[104X697[4X[25Xgap>[125X [27Xgens1max2:= AtlasGenerators( "A5", 1, 2 );[127X[104X698[4X[28Xrec( generators := [ (1,2)(3,4), (2,3)(4,5) ], groupname := "D10", [128X[104X699[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5, 2 ],[128X[104X700[4X[28X repnr := 1, size := 10, standardization := 1 )[128X[104X701[4X[25Xgap>[125X [27Xid:= gens1max2.identifier;;[127X[104X702[4X[25Xgap>[125X [27Xgens1max2 = AtlasGenerators( id );[127X[104X703[4X[28Xtrue[128X[104X704[4X[25Xgap>[125X [27Xmax2:= Group( gens1max2.generators );;[127X[104X705[4X[25Xgap>[125X [27XSize( max2 );[127X[104X706[4X[28X10[128X[104X707[4X[25Xgap>[125X [27XIdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) );[127X[104X708[4X[28Xtrue[128X[104X709[4X[32X[104X710711[33X[0;0YThe elements stored in [10Xgens1max2.generators[110X describe the restriction of the712first representation of [22XA_5[122X to a group in the second class of maximal713subgroups of [22XA_5[122X according to the list in the [5XATLAS[105X of Finite714Groups [CCNPW85]; this subgroup is isomorphic to the dihedral group [22XD_10[122X.[133X715716[1X3.5-3 AtlasProgram[101X717718[29X[2XAtlasProgram[102X( [3Xgapname[103X[, [3Xstd[103X], [3X...[103X ) [32X function719[29X[2XAtlasProgram[102X( [3Xidentifier[103X ) [32X function720[6XReturns:[106X [33X[0;10Ya record containing a program, or [9Xfail[109X.[133X721722[33X[0;0YIn the first form, [3Xgapname[103X must be a string denoting a [5XGAP[105X name (see Section723[14X3.2[114X) of a group [22XG[122X, say. If the [5XATLAS[105X of Group Representations contains a724straight line program (see Section [14X'Reference: Straight Line Programs'[114X) or725straight line decision (see Section [14X6.1[114X) or black box program (see726Section [14X6.2[114X) as described by the remaining arguments (see below) then727[2XAtlasProgram[102X returns an immutable record containing this program. Otherwise728[9Xfail[109X is returned.[133X729730[33X[0;0YIf the optional argument [3Xstd[103X is given, only those straight line731programs/decisions are considered that take generators from the [3Xstd[103X-th set732of standard generators of [22XG[122X as input, see Section [14X3.3[114X.[133X733734[33X[0;0YThe result record has the following components.[133X735736[8X[10Xprogram[110X[108X737[33X[0;6Ythe required straight line program/decision, or black box program,[133X738739[8X[10Xstandardization[110X[108X740[33X[0;6Ythe positive integer denoting the underlying standard generators of [22XG[122X,[133X741742[8X[10Xidentifier[110X[108X743[33X[0;6Ya [5XGAP[105X object (a list of filenames plus additional information) that744uniquely determines the program; the value can be used as [3Xidentifier[103X745argument of [2XAtlasProgram[102X (see below).[133X746747[33X[0;0YIn the first form, the last arguments must be as follows.[133X748749[8X(the string [10X"maxes"[110X and) a positive integer [3Xmaxnr[103X750[108X751[33X[0;6Ythe required program computes generators of the [3Xmaxnr[103X-th maximal752subgroup of the group with [5XGAP[105X name [3Xgapname[103X.[133X753754[33X[0;6YIn this case, the result record of [2XAtlasProgram[102X also may contain a755component [10Xsize[110X, whose value is the order of the maximal subgroup in756question.[133X757758[8Xone of the strings [10X"classes"[110X or [10X"cyclic"[110X[108X759[33X[0;6Ythe required program computes representatives of conjugacy classes of760elements or representatives of generators of maximally cyclic761subgroups of [22XG[122X, respectively.[133X762763[33X[0;6YSee [BSWW01] and [SWW00] for the background concerning these straight764line programs. In these cases, the result record of [2XAtlasProgram[102X also765contains a component [10Xoutputs[110X, whose value is a list of class names of766the outputs, as described in Section [14X3.4[114X.[133X767768[8Xthe strings [10X"automorphism"[110X and [3Xautname[103X[108X769[33X[0;6Ythe required program computes images of standard generators under the770outer automorphism of [22XG[122X that is given by this string.[133X771772[33X[0;6YNote that a value [10X"2"[110X of [3Xautname[103X means that the square of the773automorphism is an inner automorphism of [22XG[122X (not necessarily the774identity mapping) but the automorphism itself is not.[133X775776[8Xthe string [10X"check"[110X[108X777[33X[0;6Ythe required result is a straight line decision that takes a list of778generators for [22XG[122X and returns [9Xtrue[109X if these generators are standard779generators of [22XG[122X w.r.t. the standardization [3Xstd[103X, and [9Xfalse[109X otherwise.[133X780781[8Xthe string [10X"presentation"[110X[108X782[33X[0;6Ythe required result is a straight line decision that takes a list of783group elements and returns [9Xtrue[109X if these elements are standard784generators of [22XG[122X w.r.t. the standardization [3Xstd[103X, and [9Xfalse[109X otherwise.[133X785786[33X[0;6YSee [2XStraightLineProgramFromStraightLineDecision[102X ([14X6.1-9[114X) for an example787how to derive defining relators for [22XG[122X in terms of the standard788generators from such a straight line decision.[133X789790[8Xthe string [10X"find"[110X[108X791[33X[0;6Ythe required result is a black box program that takes [22XG[122X and returns a792list of standard generators of [22XG[122X, w.r.t. the standardization [3Xstd[103X.[133X793794[8Xthe string [10X"restandardize"[110X and an integer [3Xstd2[103X[108X795[33X[0;6Ythe required result is a straight line program that computes standard796generators of [22XG[122X w.r.t. the [3Xstd2[103X-th set of standard generators of [22XG[122X; in797this case, the argument [3Xstd[103X must be given.[133X798799[8Xthe strings [10X"other"[110X and [3Xdescr[103X[108X800[33X[0;6Ythe required program is described by [3Xdescr[103X.[133X801802[33X[0;0YThe second form of [2XAtlasProgram[102X, with only argument the list [3Xidentifier[103X, can803be used to fetch the result record with [10Xidentifier[110X value equal to804[3Xidentifier[103X.[133X805806[4X[32X Example [32X[104X807[4X[25Xgap>[125X [27Xprog:= AtlasProgram( "A5", 2 );[127X[104X808[4X[28Xrec( groupname := "A5", identifier := [ "A5", "A5G1-max2W1", 1 ], [128X[104X809[4X[28X program := <straight line program>, size := 10, [128X[104X810[4X[28X standardization := 1, subgroupname := "D10" )[128X[104X811[4X[25Xgap>[125X [27XStringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] );[127X[104X812[4X[28X"[ a, bbab ]"[128X[104X813[4X[25Xgap>[125X [27Xgens1:= AtlasGenerators( "A5", 1 );[127X[104X814[4X[28Xrec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", [128X[104X815[4X[28X id := "", [128X[104X816[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X817[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X818[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X819[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X820[4X[25Xgap>[125X [27Xmaxgens:= ResultOfStraightLineProgram( prog.program, gens1.generators );[127X[104X821[4X[28X[ (1,2)(3,4), (2,3)(4,5) ][128X[104X822[4X[25Xgap>[125X [27Xmaxgens = gens1max2.generators;[127X[104X823[4X[28Xtrue[128X[104X824[4X[32X[104X825826[33X[0;0YThe above example shows that for restricting representations given by827standard generators to a maximal subgroup of [22XA_5[122X, we can also fetch and828apply the appropriate straight line program. Such a program (see [14X'Reference:829Straight Line Programs'[114X) takes standard generators of a group --in this830example [22XA_5[122X-- as its input, and returns a list of elements in this group831--in this example generators of the [22XD_10[122X subgroup we had met above-- which832are computed essentially by evaluating structured words in terms of the833standard generators.[133X834835[4X[32X Example [32X[104X836[4X[25Xgap>[125X [27Xprog:= AtlasProgram( "J1", "cyclic" );[127X[104X837[4X[28Xrec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], [128X[104X838[4X[28X outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], [128X[104X839[4X[28X program := <straight line program>, standardization := 1 )[128X[104X840[4X[25Xgap>[125X [27Xgens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );;[127X[104X841[4X[25Xgap>[125X [27XResultOfStraightLineProgram( prog.program, gens );[127X[104X842[4X[28X[ (x*y)^2*((y*x)^2*y^2*x)^2*y^2, x*y, (x*(y*x*y)^2)^2*y, [128X[104X843[4X[28X (x*y*x*(y*x*y)^3*x*y^2)^2*x*y*x*(y*x*y)^2*y, x*y*x*(y*x*y)^2*y, [128X[104X844[4X[28X (x*y)^2*y ][128X[104X845[4X[32X[104X846847[33X[0;0YThe above example shows how to fetch and use straight line programs for848computing generators of representatives of maximally cyclic subgroups of a849given group.[133X850851[1X3.5-4 AtlasProgramInfo[101X852853[29X[2XAtlasProgramInfo[102X( [3Xgapname[103X[, [3Xstd[103X][, [3X"contents"[103X, [3Xsources[103X][, [3X...[103X] ) [32X function854[6XReturns:[106X [33X[0;10Ya record describing a program, or [9Xfail[109X.[133X855856[33X[0;0Y[2XAtlasProgramInfo[102X takes the same arguments as [2XAtlasProgram[102X ([14X3.5-3[114X), and857returns a similar result. The only difference is that the records returned858by [2XAtlasProgramInfo[102X have no components [10Xprogram[110X and [10Xoutputs[110X. The idea is that859one can use [2XAtlasProgramInfo[102X for testing whether the program in question is860available at all, but without transferring it from a remote server. The861[10Xidentifier[110X component of the result of [2XAtlasProgramInfo[102X can then be used to862fetch the program with [2XAtlasProgram[102X ([14X3.5-3[114X).[133X863864[4X[32X Example [32X[104X865[4X[25Xgap>[125X [27XAtlasProgramInfo( "J1", "cyclic" );[127X[104X866[4X[28Xrec( groupname := "J1", identifier := [ "J1", "J1G1-cycW1", 1 ], [128X[104X867[4X[28X standardization := 1 )[128X[104X868[4X[32X[104X869870[1X3.5-5 OneAtlasGeneratingSetInfo[101X871872[29X[2XOneAtlasGeneratingSetInfo[102X( [[3Xgapname[103X, ][[3Xstd[103X, ][[3X...[103X] ) [32X function873[6XReturns:[106X [33X[0;10Ya record describing a representation that satisfies the874conditions, or [9Xfail[109X.[133X875876[33X[0;0YLet [3Xgapname[103X be a string denoting a [5XGAP[105X name (see Section [14X3.2[114X) of a group [22XG[122X,877say. If the [5XATLAS[105X of Group Representations contains at least one878representation for [22XG[122X with the required properties then879[2XOneAtlasGeneratingSetInfo[102X returns a record [3Xr[103X whose components are the same880as those of the records returned by [2XAtlasGenerators[102X ([14X3.5-2[114X), except that the881component [10Xgenerators[110X is not contained; the component [10Xidentifier[110X of [3Xr[103X can be882used as input for [2XAtlasGenerators[102X ([14X3.5-2[114X) in order to fetch the generators.883If no representation satisfying the given conditions is available then [9Xfail[109X884is returned.[133X885886[33X[0;0YIf the argument [3Xstd[103X is given then it must be a positive integer or a list of887positive integers, denoting the sets of standard generators w.r.t. which the888representation shall be given (see Section [14X3.3[114X).[133X889890[33X[0;0YThe argument [3Xgapname[103X can be missing (then all available groups are891considered), or a list of group names can be given instead.[133X892893[33X[0;0YFurther restrictions can be entered as arguments, with the same meaning as894described for [2XDisplayAtlasInfo[102X ([14X3.5-1[114X). The result of895[2XOneAtlasGeneratingSetInfo[102X describes the first generating set for [22XG[122X that896matches the restrictions, in the ordering shown by [2XDisplayAtlasInfo[102X ([14X3.5-1[114X).[133X897898[33X[0;0YNote that even in the case that the user parameter [21Xremote[121X has the value [9Xtrue[109X899(see Section [14X4.3-1[114X), [2XOneAtlasGeneratingSetInfo[102X does [13Xnot[113X attempt to [13Xtransfer[113X900remote data files, just the table of contents is evaluated. So this function901(as well as [2XAllAtlasGeneratingSetInfos[102X ([14X3.5-6[114X)) can be used to check for the902availability of certain representations, and afterwards one can call903[2XAtlasGenerators[102X ([14X3.5-2[114X) for those representations one wants to work with.[133X904905[33X[0;0YIn the following example, we try to access information about permutation906representations for the alternating group [22XA_5[122X.[133X907908[4X[32X Example [32X[104X909[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5" );[127X[104X910[4X[28Xrec( groupname := "A5", id := "", [128X[104X911[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X912[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X913[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X914[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X915[4X[25Xgap>[125X [27Xgens:= AtlasGenerators( info.identifier );[127X[104X916[4X[28Xrec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5", [128X[104X917[4X[28X id := "", [128X[104X918[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X919[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X920[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X921[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X922[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true );[127X[104X923[4X[28Xtrue[128X[104X924[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" );[127X[104X925[4X[28Xtrue[128X[104X926[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] );[127X[104X927[4X[28Xtrue[128X[104X928[4X[25Xgap>[125X [27XOneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 );[127X[104X929[4X[28Xfail[128X[104X930[4X[32X[104X931932[33X[0;0YNote that a permutation representation of degree [22X20[122X could be obtained by933taking twice the primitive representation on [22X10[122X points; however, the [5XATLAS[105X934of Group Representations does not store this imprimitive representation (cf.935Section [14X3.1[114X).[133X936937[33X[0;0YWe continue this example a little. Next we access matrix representations of938[22XA_5[122X.[133X939940[4X[32X Example [32X[104X941[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true );[127X[104X942[4X[28Xrec( dim := 4, groupname := "A5", id := "a", [128X[104X943[4X[28X identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, [128X[104X944[4X[28X 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), [128X[104X945[4X[28X size := 60, standardization := 1, type := "matff" )[128X[104X946[4X[25Xgap>[125X [27Xgens:= AtlasGenerators( info.identifier );[127X[104X947[4X[28Xrec( dim := 4, [128X[104X948[4X[28X generators := [ <an immutable 4x4 matrix over GF2>, [128X[104X949[4X[28X <an immutable 4x4 matrix over GF2> ], groupname := "A5", [128X[104X950[4X[28X id := "a", [128X[104X951[4X[28X identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, [128X[104X952[4X[28X 2 ], repname := "A5G1-f2r4aB0", repnr := 4, ring := GF(2), [128X[104X953[4X[28X size := 60, standardization := 1, type := "matff" )[128X[104X954[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 );[127X[104X955[4X[28Xtrue[128X[104X956[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 );[127X[104X957[4X[28Xtrue[128X[104X958[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );[127X[104X959[4X[28Xtrue[128X[104X960[4X[25Xgap>[125X [27XOneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 );[127X[104X961[4X[28Xrec( dim := 2, groupname := "A5", id := "a", [128X[104X962[4X[28X identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, [128X[104X963[4X[28X 4 ], repname := "A5G1-f4r2aB0", repnr := 8, ring := GF(2^2), [128X[104X964[4X[28X size := 60, standardization := 1, type := "matff" )[128X[104X965[4X[25Xgap>[125X [27XOneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 );[127X[104X966[4X[28Xfail[128X[104X967[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0, Dimension, 4 );[127X[104X968[4X[28Xrec( dim := 4, groupname := "A5", id := "", [128X[104X969[4X[28X identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], [128X[104X970[4X[28X repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, [128X[104X971[4X[28X standardization := 1, type := "matint" )[128X[104X972[4X[25Xgap>[125X [27Xgens:= AtlasGenerators( info.identifier );[127X[104X973[4X[28Xrec( dim := 4, [128X[104X974[4X[28X generators := [128X[104X975[4X[28X [ [128X[104X976[4X[28X [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [128X[104X977[4X[28X [ -1, -1, -1, -1 ] ], [128X[104X978[4X[28X [ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [128X[104X979[4X[28X [ 1, 0, 0, 0 ] ] ], groupname := "A5", id := "", [128X[104X980[4X[28X identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], [128X[104X981[4X[28X repname := "A5G1-Zr4B0", repnr := 14, ring := Integers, size := 60, [128X[104X982[4X[28X standardization := 1, type := "matint" )[128X[104X983[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", Ring, Integers );[127X[104X984[4X[28Xtrue[128X[104X985[4X[25Xgap>[125X [27Xinfo = OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );[127X[104X986[4X[28Xtrue[128X[104X987[4X[25Xgap>[125X [27XOneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 );[127X[104X988[4X[28Xfail[128X[104X989[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 );[127X[104X990[4X[28Xrec( dim := 3, groupname := "A5", id := "a", [128X[104X991[4X[28X identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], [128X[104X992[4X[28X repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), [128X[104X993[4X[28X size := 60, standardization := 1, type := "matalg" )[128X[104X994[4X[25Xgap>[125X [27Xgens:= AtlasGenerators( info.identifier );[127X[104X995[4X[28Xrec( dim := 3, [128X[104X996[4X[28X generators := [128X[104X997[4X[28X [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)^4, -E(5)-E(5)^4, 1 ] [128X[104X998[4X[28X ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ], [128X[104X999[4X[28X groupname := "A5", id := "a", [128X[104X1000[4X[28X identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], [128X[104X1001[4X[28X repname := "A5G1-Ar3aB0", repnr := 17, ring := NF(5,[ 1, 4 ]), [128X[104X1002[4X[28X size := 60, standardization := 1, type := "matalg" )[128X[104X1003[4X[25Xgap>[125X [27XOneAtlasGeneratingSetInfo( "A5", Ring, GF(17) );[127X[104X1004[4X[28Xfail[128X[104X1005[4X[32X[104X10061007[1X3.5-6 AllAtlasGeneratingSetInfos[101X10081009[29X[2XAllAtlasGeneratingSetInfos[102X( [[3Xgapname[103X, ][[3Xstd[103X, ][[3X...[103X] ) [32X function1010[6XReturns:[106X [33X[0;10Ythe list of all records describing representations that satisfy1011the conditions.[133X10121013[33X[0;0Y[2XAllAtlasGeneratingSetInfos[102X is similar to [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X).1014The difference is that the list of [13Xall[113X records describing the available1015representations with the given properties is returned instead of just one1016such component. In particular an empty list is returned if no such1017representation is available.[133X10181019[4X[32X Example [32X[104X1020[4X[25Xgap>[125X [27XAllAtlasGeneratingSetInfos( "A5", IsPermGroup, true );[127X[104X1021[4X[28X[ rec( groupname := "A5", id := "", [128X[104X1022[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ][128X[104X1023[4X[28X , isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X1024[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, [128X[104X1025[4X[28X stabilizer := "A4", standardization := 1, transitivity := 3, [128X[104X1026[4X[28X type := "perm" ), [128X[104X1027[4X[28X rec( groupname := "A5", id := "", [128X[104X1028[4X[28X identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ][128X[104X1029[4X[28X , isPrimitive := true, maxnr := 2, p := 6, rankAction := 2, [128X[104X1030[4X[28X repname := "A5G1-p6B0", repnr := 2, size := 60, [128X[104X1031[4X[28X stabilizer := "D10", standardization := 1, transitivity := 2, [128X[104X1032[4X[28X type := "perm" ), [128X[104X1033[4X[28X rec( groupname := "A5", id := "", [128X[104X1034[4X[28X identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, [128X[104X1035[4X[28X 10 ], isPrimitive := true, maxnr := 3, p := 10, [128X[104X1036[4X[28X rankAction := 3, repname := "A5G1-p10B0", repnr := 3, [128X[104X1037[4X[28X size := 60, stabilizer := "S3", standardization := 1, [128X[104X1038[4X[28X transitivity := 1, type := "perm" ) ][128X[104X1039[4X[32X[104X10401041[33X[0;0YNote that a matrix representation in any characteristic can be obtained by1042reducing a permutation representation or an integral matrix representation;1043however, the [5XATLAS[105X of Group Representations does not [13Xstore[113X such a1044representation (cf. Section [14X3.1[114X).[133X104510461047[1X3.5-7 [33X[0;0YAtlasGroup[133X[101X10481049[29X[2XAtlasGroup[102X( [[3Xgapname[103X[, [3Xstd[103X, ]][[3X...[103X] ) [32X function1050[29X[2XAtlasGroup[102X( [3Xidentifier[103X ) [32X function1051[6XReturns:[106X [33X[0;10Ya group that satisfies the conditions, or [9Xfail[109X.[133X10521053[33X[0;0Y[2XAtlasGroup[102X takes the same arguments as [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X),1054and returns the group generated by the [10Xgenerators[110X component of the record1055that is returned by [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) with these arguments;1056if [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) returns [9Xfail[109X then also [2XAtlasGroup[102X1057returns [9Xfail[109X.[133X10581059[4X[32X Example [32X[104X1060[4X[25Xgap>[125X [27Xg:= AtlasGroup( "A5" );[127X[104X1061[4X[28XGroup([ (1,2)(3,4), (1,3,5) ])[128X[104X1062[4X[32X[104X10631064[33X[0;0YAlternatively, it is possible to enter exactly one argument, a record1065[3Xidentifier[103X as returned by [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) or1066[2XAllAtlasGeneratingSetInfos[102X ([14X3.5-6[114X), or the [10Xidentifier[110X component of such a1067record.[133X10681069[4X[32X Example [32X[104X1070[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5" );[127X[104X1071[4X[28Xrec( groupname := "A5", id := "", [128X[104X1072[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X1073[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X1074[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X1075[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X1076[4X[25Xgap>[125X [27XAtlasGroup( info );[127X[104X1077[4X[28XGroup([ (1,2)(3,4), (1,3,5) ])[128X[104X1078[4X[25Xgap>[125X [27XAtlasGroup( info.identifier );[127X[104X1079[4X[28XGroup([ (1,2)(3,4), (1,3,5) ])[128X[104X1080[4X[32X[104X10811082[33X[0;0YIn the groups returned by [2XAtlasGroup[102X, the value of the attribute1083[2XAtlasRepInfoRecord[102X ([14X3.5-9[114X) is set. This information is used for example by1084[2XAtlasSubgroup[102X ([14X3.5-8[114X) when this function is called with second argument a1085group created by [2XAtlasGroup[102X.[133X108610871088[1X3.5-8 [33X[0;0YAtlasSubgroup[133X[101X10891090[29X[2XAtlasSubgroup[102X( [3Xgapname[103X[, [3Xstd[103X][, [3X...[103X], [3Xmaxnr[103X ) [32X function1091[29X[2XAtlasSubgroup[102X( [3Xidentifier[103X, [3Xmaxnr[103X ) [32X function1092[29X[2XAtlasSubgroup[102X( [3XG[103X, [3Xmaxnr[103X ) [32X function1093[6XReturns:[106X [33X[0;10Ya group that satisfies the conditions, or [9Xfail[109X.[133X10941095[33X[0;0YThe arguments of [2XAtlasSubgroup[102X, except the last argument [3Xmaxn[103X, are the same1096as for [2XAtlasGroup[102X ([14X3.5-7[114X). If the [5XATLAS[105X of Group Representations provides a1097straight line program for restricting representations of the group with name1098[3Xgapname[103X (given w.r.t. the [3Xstd[103X-th standard generators) to the [3Xmaxnr[103X-th1099maximal subgroup and if a representation with the required properties is1100available, in the sense that calling [2XAtlasGroup[102X ([14X3.5-7[114X) with the same1101arguments except [3Xmaxnr[103X yields a group, then [2XAtlasSubgroup[102X returns the1102restriction of this representation to the [3Xmaxnr[103X-th maximal subgroup.[133X11031104[33X[0;0YIn all other cases, [9Xfail[109X is returned.[133X11051106[33X[0;0YNote that the conditions refer to the group and not to the subgroup. It may1107happen that in the restriction of a permutation representation to a1108subgroup, fewer points are moved, or that the restriction of a matrix1109representation turns out to be defined over a smaller ring. Here is an1110example.[133X11111112[4X[32X Example [32X[104X1113[4X[25Xgap>[125X [27Xg:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 );[127X[104X1114[4X[28XGroup([ (1,5)(2,3), (1,3,5) ])[128X[104X1115[4X[25Xgap>[125X [27XNrMovedPoints( g );[127X[104X1116[4X[28X4[128X[104X1117[4X[32X[104X11181119[33X[0;0YAlternatively, it is possible to enter exactly two arguments, the first1120being a record [3Xidentifier[103X as returned by [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X)1121or [2XAllAtlasGeneratingSetInfos[102X ([14X3.5-6[114X), or the [10Xidentifier[110X component of such a1122record, or a group [3XG[103X constructed with [2XAtlasGroup[102X ([14X3.5-7[114X).[133X11231124[4X[32X Example [32X[104X1125[4X[25Xgap>[125X [27Xinfo:= OneAtlasGeneratingSetInfo( "A5" );[127X[104X1126[4X[28Xrec( groupname := "A5", id := "", [128X[104X1127[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X1128[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X1129[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X1130[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X1131[4X[25Xgap>[125X [27XAtlasSubgroup( info, 1 );[127X[104X1132[4X[28XGroup([ (1,5)(2,3), (1,3,5) ])[128X[104X1133[4X[25Xgap>[125X [27XAtlasSubgroup( info.identifier, 1 );[127X[104X1134[4X[28XGroup([ (1,5)(2,3), (1,3,5) ])[128X[104X1135[4X[25Xgap>[125X [27XAtlasSubgroup( AtlasGroup( "A5" ), 1 );[127X[104X1136[4X[28XGroup([ (1,5)(2,3), (1,3,5) ])[128X[104X1137[4X[32X[104X11381139[1X3.5-9 AtlasRepInfoRecord[101X11401141[29X[2XAtlasRepInfoRecord[102X( [3XG[103X ) [32X attribute1142[6XReturns:[106X [33X[0;10Ythe record stored in the group [3XG[103X when this was constructed with1143[2XAtlasGroup[102X ([14X3.5-7[114X).[133X11441145[33X[0;0YFor a group [3XG[103X that has been constructed with [2XAtlasGroup[102X ([14X3.5-7[114X), the value1146of this attribute is the info record that describes [3XG[103X, in the sense that1147this record was the first argument of the call to [2XAtlasGroup[102X ([14X3.5-7[114X), or it1148is the result of the call to [2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) with the1149conditions that were listed in the call to [2XAtlasGroup[102X ([14X3.5-7[114X).[133X11501151[4X[32X Example [32X[104X1152[4X[25Xgap>[125X [27XAtlasRepInfoRecord( AtlasGroup( "A5" ) );[127X[104X1153[4X[28Xrec( groupname := "A5", id := "", [128X[104X1154[4X[28X identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], [128X[104X1155[4X[28X isPrimitive := true, maxnr := 1, p := 5, rankAction := 2, [128X[104X1156[4X[28X repname := "A5G1-p5B0", repnr := 1, size := 60, stabilizer := "A4", [128X[104X1157[4X[28X standardization := 1, transitivity := 3, type := "perm" )[128X[104X1158[4X[32X[104X115911601161[1X3.6 [33X[0;0Y[5XBrowse[105X[101X[1X Applications Provided by [5XAtlasRep[105X[101X[1X[133X[101X11621163[33X[0;0YThe functions [2XBrowseMinimalDegrees[102X ([14X3.6-1[114X), [2XBrowseBibliographySporadicSimple[102X1164([14X3.6-2[114X), and [2XBrowseAtlasInfo[102X ([14XBrowse: BrowseAtlasInfo[114X) (an alternative to1165[2XDisplayAtlasInfo[102X ([14X3.5-1[114X)) are available only if the [5XGAP[105X package [5XBrowse[105X (see1166[BL14]) is loaded.[133X11671168[1X3.6-1 BrowseMinimalDegrees[101X11691170[29X[2XBrowseMinimalDegrees[102X( [[3Xgroupnames[103X] ) [32X function1171[6XReturns:[106X [33X[0;10Ythe list of info records for the clicked representations.[133X11721173[33X[0;0YIf the [5XGAP[105X package [5XBrowse[105X (see [BL14]) is loaded then this function is1174available. It opens a browse table whose rows correspond to the groups for1175which the [5XATLAS[105X of Group Representations contains some information about1176minimal degrees, whose columns correspond to the characteristics that occur,1177and whose entries are the known minimal degrees.[133X11781179[4X[32X Example [32X[104X1180[4X[25Xgap>[125X [27Xif IsBound( BrowseMinimalDegrees ) then[127X[104X1181[4X[25X>[125X [27X down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;;[127X[104X1182[4X[25X>[125X [27X right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;;[127X[104X1183[4X[25X>[125X [27X enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];;[127X[104X1184[4X[25X>[125X [27X # just scroll in the table[127X[104X1185[4X[25X>[125X [27X BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN,[127X[104X1186[4X[25X>[125X [27X right, right, right ], "sedddrrrddd", nop, nop, "Q" ) );[127X[104X1187[4X[25X>[125X [27X BrowseMinimalDegrees();;[127X[104X1188[4X[25X>[125X [27X # restrict the table to the groups with minimal ordinary degree 6[127X[104X1189[4X[25X>[125X [27X BrowseData.SetReplay( Concatenation( "scf6",[127X[104X1190[4X[25X>[125X [27X [ down, down, right, enter, enter ] , nop, nop, "Q" ) );[127X[104X1191[4X[25X>[125X [27X BrowseMinimalDegrees();;[127X[104X1192[4X[25X>[125X [27X BrowseData.SetReplay( false );[127X[104X1193[4X[25X>[125X [27Xfi;[127X[104X1194[4X[32X[104X11951196[33X[0;0YIf an argument [3Xgroupnames[103X is given then it must be a list of group names of1197the [5XATLAS[105X of Group Representations; the browse table is then restricted to1198the rows corresponding to these group names and to the columns that are1199relevant for these groups. A perhaps interesting example is the subtable1200with the data concerning sporadic simple groups and their covering groups,1201which has been published in [Jan05]. This table can be shown as follows.[133X12021203[4X[32X Example [32X[104X1204[4X[25Xgap>[125X [27Xif IsBound( BrowseMinimalDegrees ) then[127X[104X1205[4X[25X>[125X [27X # just scroll in the table[127X[104X1206[4X[25X>[125X [27X BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ],[127X[104X1207[4X[25X>[125X [27X "rrrrrrrrrrrrrr", nop, nop, "Q" ) );[127X[104X1208[4X[25X>[125X [27X BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );;[127X[104X1209[4X[25X>[125X [27Xfi;[127X[104X1210[4X[32X[104X12111212[33X[0;0YThe browse table does not contain rows for the groups [22X6.M_22[122X, [22X12.M_22[122X,1213[22X6.Fi_22[122X. Note that in spite of the title of [Jan05], the entries in Table 11214of this paper are in fact the minimal degrees of faithful [13Xirreducible[113X1215representations, and in the above three cases, these degrees are larger than1216the minimal degrees of faithful representations. The underlying data of the1217browse table is about the minimal faithful (but not necessarily irreducible)1218degrees.[133X12191220[33X[0;0YThe return value of [2XBrowseMinimalDegrees[102X is the list of1221[2XOneAtlasGeneratingSetInfo[102X ([14X3.5-5[114X) values for those representations that have1222been [21Xclicked[121X in visual mode.[133X12231224[33X[0;0YThe variant without arguments of this function is also available in the menu1225shown by [2XBrowseGapData[102X ([14XBrowse: BrowseGapData[114X).[133X12261227[1X3.6-2 BrowseBibliographySporadicSimple[101X12281229[29X[2XBrowseBibliographySporadicSimple[102X( ) [32X function1230[6XReturns:[106X [33X[0;10Ya record as returned by [2XParseBibXMLExtString[102X ([14XGAPDoc:1231ParseBibXMLextString[114X).[133X12321233[33X[0;0YIf the [5XGAP[105X package [5XBrowse[105X (see [BL14]) is loaded then this function is1234available. It opens a browse table whose rows correspond to the entries of1235the bibliographies in the [5XATLAS[105X of Finite Groups [CCNPW85] and in the [5XATLAS[105X1236of Brauer Characters [JLPW95].[133X12371238[33X[0;0YThe function is based on [2XBrowseBibliography[102X ([14XBrowse: BrowseBibliography[114X),1239see the documentation of this function for details, e.g., about the return1240value.[133X12411242[33X[0;0YThe returned record encodes the bibliography entries corresponding to those1243rows of the table that are [21Xclicked[121X in visual mode, in the same format as the1244return value of [2XParseBibXMLExtString[102X ([14XGAPDoc: ParseBibXMLextString[114X), see the1245manual of the [5XGAP[105X package [5XGAPDoc[105X [LN12] for details.[133X12461247[33X[0;0Y[2XBrowseBibliographySporadicSimple[102X can be called also via the menu shown by1248[2XBrowseGapData[102X ([14XBrowse: BrowseGapData[114X).[133X12491250[4X[32X Example [32X[104X1251[4X[25Xgap>[125X [27Xif IsBound( BrowseBibliographySporadicSimple ) then[127X[104X1252[4X[25X>[125X [27X enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];;[127X[104X1253[4X[25X>[125X [27X BrowseData.SetReplay( Concatenation([127X[104X1254[4X[25X>[125X [27X # choose the application[127X[104X1255[4X[25X>[125X [27X "/Bibliography of Sporadic Simple Groups", [ enter, enter ],[127X[104X1256[4X[25X>[125X [27X # search in the title column for the Atlas of Finite Groups[127X[104X1257[4X[25X>[125X [27X "scr/Atlas of finite groups", [ enter,[127X[104X1258[4X[25X>[125X [27X # and quit[127X[104X1259[4X[25X>[125X [27X nop, nop, nop, nop ], "Q" ) );[127X[104X1260[4X[25X>[125X [27X BrowseGapData();;[127X[104X1261[4X[25X>[125X [27X BrowseData.SetReplay( false );[127X[104X1262[4X[25X>[125X [27Xfi;[127X[104X1263[4X[32X[104X12641265[33X[0;0YThe bibliographies contained in the [5XATLAS[105X of Finite Groups [CCNPW85] and in1266the [5XATLAS[105X of Brauer Characters [JLPW95] are available online in HTML format,1267see [7Xhttp://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep/bibl/index.html[107X.[133X12681269[33X[0;0YThe source data in BibXMLext format, which are used by1270[2XBrowseBibliographySporadicSimple[102X, is part of the [5XAtlasRep[105X package, in four1271files with suffix [11Xxml[111X in the package's [11Xbibl[111X directory. Note that each of the1272two books contains two bibliographies.[133X12731274[33X[0;0YDetails about the BibXMLext format, including information how to transform1275the data into other formats such as BibTeX, can be found in the [5XGAP[105X package1276[5XGAPDoc[105X (see [LN12]).[133X1277127812791280