Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563642 views
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: hyp_isom.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ matrix_TYP *hyperbolic_isometry(x1, x2, S)
@ matrix_TYP *x1, *x2, *S;
@
@ The first row in the matrix x1 (resp. x2) is interpreted as a vector
@ v1 (resp. v2) in Z^n.
@ The function calculates a matrix A in GL_n(Q) (if exists) with
@          v1A = v2 and ASA^{tr} = S
@ Any integral matrix with this property must be of the form BA where
@ B is a matrix of the group that can be caluclated with
@    B = hyperbolic_stabilizer(x1, S)
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: hyp_stabilizer.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ bravais_TYP *hyperbolic_stabilizer(x, S)
@ matrix_TYP *x, *S;
@
@ the functions 'hyperbolic_stabilizer' calculates generators 
@ for a finite subgroup G of GL_n(Q) with
@    vg = v   and gSg^{tr} = S for all g in G.
@ where v denotes the first row of x.
@ The group H of all integral matrices with this property is
@ a subgroup of H.
@---------------------------------------------------------------------------
@