Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563664 views
@
@--------------------------------------------------------------------
@  FILE: all_vor_neighbours.c
@--------------------------------------------------------------------
@
@ matrix_TYP *all_voronoi_neighbours(P, G, Ftr, tr_bifo)
@ matrix_TYP *P, **Ftr, *tr_bifo;
@ bravais_TYP *G;
@--------------------------------------------------------------------
@
@ The arguments of 'all_voronoi_neighbours' are:
@ P:		a G-perfect form
@ G:		the group for which P is G-perfect
@ Ftr:		a basis for the integral forms in the formspace of G^{tr}
@ trbifo:	The matrix of the bilinear form
@		F(G)xF(G^{tr})--> R: (A,B)---> trace(AB)
@		with respect to the Z-bases given by G->form and Ftr
@ Let Fdim be the dimension of the formspace of G and m be the number of
@ G-perfect forms that are neighbours of P.
@ Then the result of 'all_perfect_neighbours' is a matrix N with m rows
@ and Fdim+3 columns.
@ For 0 < i< m let R[i] be the form in F(G) represented by the
@ first Fdim entries of the i-th row of N, t.m.
@     R[i] = N[i][0] * G->form[0] + ..... + N[i][Fdim-1] * G->form[Fdim-1]
@ Further let
@     p[i] := N[i][Fdim], r[i] := N[i][Fdim+1], c[i] := N[i][Fdim+2]
@ Then P[i] := (p[i]*P + r[i]*R[i]) / c[i]
@ is a G-perfect form  neighboured to P.
@--------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: calc_voronoi_data.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_basics(V, G, Gtr, prime)
@ voronoi_TYP *V;
@ bravais_TYP *G, *Gtr;
@ int prime;
@
@ For using this function V->gram must be a G-perfect form
@ The function calculates:
@
@  V->SV_no:       the number of shortest vectors of V->gram.
@  V->min:         the minimum of V->gram.
@  V->pdet:        the determinante of V->gram modulo prime.
@  V->prime:       = prime.
@  V->vert:        the coordinates of the voronoi vertices with
@                  respect to the Z-basis of the space of invariant
@                  symmetric matrices of G^{tr} given in Gtr->form.
@  V->vert_no:     the number of voronoi_vertices.
@  V->red_inv:     the pair-reduced of (V->gram)^{-1} (with kgv = 1).
@  V->T:           the matrix such that
@                     T  *(V->gram)^{-1} * T^{tr} = V->red_inv
@  V->Ti:          the inverse matrix of V->T
@  V->Gtrred:      the bravais_TYP obtained by konjugating Gtr with
@                  the transposed of V->Ti with the function
@                  'konj_bravais'
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_pol(V, bifo)
@ voronoi_TYP *V;
@
@  calculates the polyeder_TYP V->pol where the walls of V->pol
@  are the walls in 'V->vert' multiplied with the transposed of bifo,
@  i.e. V->vert[i] * bifo^{tr} 0 <= i <V->vert_no
@  is the input for 'first_polyeder' and 'refine_polyeder' used
@ to calculate 'V->pol'.
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_good_inv(V, Gtr)
@ voronoi_TYP *V;
@ bravais_TYP *Gtr;
@
@ applies 'short_red' and 'mink_red' to V->red_inv to obtain a better
@ form.
@ V->T, V->Ti and V->Gtrred are changed in the same manner as described
@ for 'calc_voronoi_basics'
@
@ Furthermore the shortest vectors of the better reduced form are
@ calculated up to the norm that equals the maximal diagonal entry
@ of V->red_inv.
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_stab(V, G, Gtr, bifo)
@ voronoi_TYP *V;
@ bravais_TYP *G, *Gtr;
@ matrix_TYP *bifo;
@
@ calculates a generating set for
@  H = { h\in GL_n(Z) | h^{tr} * V->gram * h = V->gram and
@                       h G h^{-1} = G                      }
@
@  Furthermore the bravais_TYP* V->linstab is calculated, that
@  describes the linear action for H on the space of G-invariant
@  symmetric matrices with respect to the Z-basis given in 
@  G->form (c.f. the function 'nomlin' in directory 'Bravais'
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ matrix_TYP *calc_voronoi_isometry(V1, V2, G, Gtr, bifo)
@ voronoi_TYP *V1, *V2;
@ bravais_TYP *G, *Gtr;
@ matrix_TYP *bifo;
@
@  calculates a matrix X in GL_N(Z) such that
@     X * V1->gram * X^{tr} = V2->gram and  X * G * X^{-1} = G
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_dir_reps(V, G, Gtr, bifo)
@ voronoi_TYP *V;
@ bravais_TYP *G, *Gtr;
@ matrix_TYP *bifo;
@ 
@  calculates representatives of the orbits of V->stab on the
@  Voronoi-directions given in V->pol->vert.
@  The representatives are stored in V->dir_reps in the following way
@  V->dir_reps->cols is the number of representatives.
@  Each column discribes a representatives
@  The integer in the first row describs the number of the representative,
@  i.e. V->dir_reps->array.SZ[0][i] = k means that V->pol->vert[k]
@  is a representative of the i-th orbit.
@  The entry in the second row is the length of the orbit.
@  The third row is allocated in 'normalizer', where repesentatives
@  V[0],...,V[t] of the G-perfect forms are calculated
@  V->dir_reps->array.SZ[2][i] = k means, that V is a neighbour of
@  V[k] and the Voronoi-direction from V to V[k] is the one
@ given in the first row.
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void calc_voronoi_complete(V, G, Gtr, bifo, prime)
@ voronoi_TYP *V;
@ bravais_TYP *G, *Gtr;
@ matrix_TYP *bifo;
@ int prime;
@
@  applies:
@    calc_voronoi_basics(V, G, Gtr, prime);
@    calc_voronoi_pol(V, bifo);
@    calc_voronoi_good_inv(V, Gtr);
@    calc_voronoi_stab(V, G, Gtr, bifo);
@    calc_voronoi_dir_reps(V, G, Gtr, bifo);
@---------------------------------------------------------------------------
@
@
@---------------------------------------------------------------------
@  FILE: first_perfect.c
@---------------------------------------------------------------------
@
@
@ matrix_TYP *first_perfect(A, G, Ftr, trbifo, min)
@ matrix_TYP *A, **Ftr, *trbifo;
@ bravais_TYP *G;
@ int *min;
@
@ 'first_perfect' calculates a G-perfect Form.
@ The arguments of 'first_perfect' are
@ A:		a G-invariant, positive definite Form
@ G:		the group for which a perfect form will be calculated
@ Ftr:		a Z-basis for the integral forms in the formspace of G^{tr}
@ trbifo:	The matrix of the bilinear form
@		F(G)xF(G^{tr})--> R: (A,B)---> trace(AB)
@		with respect to the Z-bases given by G->form and Ftr
@ min:		The pointer min returns the minimum of the calculated
@               perfect form.
@---------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: init_voronoi.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ voronoi_TYP *init_voronoi()
@
@ allocates storage for a pointer to voronoi_TYP and sets all intergers
@ and all pointers of it to 0 resp. NULL.
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void clear_voronoi(V)
@ voronoi_TYP *V;
@
@  frees all pointers that are allocated in the the voronoi_TYP *V
@  and sets them to NULL
@  All integers are set 0.
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ void put_voronoi(V)
@ voronoi_TYP *V;
@
@ Prints the informations in V to standard-output with comments
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: normalizer.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ voronoi_TYP **normalizer(P, G, Gtr, prime, V_no)
@ matrix_TYP *P;
@ bravais_TYP *G, *Gtr;
@ int prime, *V_no;
@
@  The arguments of normalizer are
@  P:     A G-perfect form (can be calculated with 'first_perfect')
@  G:     A group given as 'bravais_TYP*' where 'G->form' must contain a
@         Z-Basis of the integral G-invariant matrices.
@  Gtr:   The group G^{tr} given as 'bravais_TYP', also
@         with a Z-basis in 'G->form'
@  prime: a prime number (used to calculate determinates modulo p
@         for a simple criterion of two symmetric matrices been
@         not isometric.
@  V_no:  via this pointer the number of returned 'voronoi_TYP'
@         is returned.
@
@ 'normalizer' calculates representatives of the G-perfect forms.
@ The are returned in a list 'voronoi_TYP**'
@ Furthermore generators of the integral normalizer of G are calculated
@ and written to G->normal. Their number is G->normal_no.
@  
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE: pair_red_inv.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ matrix_TYP *pair_red_inv(A, T)
@ matrix_TYP *A, *T;
@
@  calculates a matrices B and T such that  T A^{-1} T^{tr} = B 
@  is pair_reduced.
@  B is returned with B->kgv = 1 and the transformation is written to T.
@  The function used GNU MP to avoid overflow
@---------------------------------------------------------------------------
@
@  -----------------------------------------------------------------------
@  FILE: vor_neighbour.c:
@  -----------------------------------------------------------------------
@
@
@ matrix_TYP *voronoi_neighbour(A, X, Amin, lc, rc)
@ matrix_TYP *A, *X;
@ int Amin, *lc, *rc;
@
@ The arguments of 'voronoi_neigbour' are
@ A:        a positiv definite matrix
@ Amin:     The Minimum of A, min(A) :=  min{yAy^{tr} | y in Z^n, y not 0}
@ X:        a symmetric matrix, which is not positiv semidefinite 
@ lc, rc:   These pointer to an integer return the values of the
@           coefficients N = lc * A + rc *X for the result N of the
@           function
@
@  For A positive definite let M(A) denote the set of all y in Z^n
@  with yAy^{tr} = min(A) and
@  Z(A, X) the set of all y in M(A) with yXy^{tr} = 0.
@  The function voronoi_neigbbour calculates a Matrix N = lc *A + rc * X
@  with positive integral coefficients lc and rc such that
@  Z(A, X) is a proper subset of M(N).
@  In particular  min(N) = lc * min(A).
@-----------------------------------------------------------------------
@ 
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@ FILE:  vor_vertices.c
@---------------------------------------------------------------------------
@---------------------------------------------------------------------------
@
@---------------------------------------------------------------------------
@ matrix_TYP **voronoi_vertices(form, grp, anz, form_min, SV_no)
@ matrix_TYP *form;
@ bravais_TYP *grp;
@ int *anz, *form_min, *SV_no;
@
@ calculates the voronoi_vertices, i.e. the matrices in the space of
@ symmetric matrices, that are invariant under the action of G^{tr},
@ where the voronoi vertices are defined by the sum over all g in the
@ group 'grp'  of
@      g x^{tr}x g,
@ where x is a shortest vector of 'form'.
@
@ The number of these vertices is returned via (int *anz)
@ the number of shortest vectors of 'form' via (int *SV_no) and
@ the minimum of 'form' via (int *form_min)
@---------------------------------------------------------------------------
@